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Abstract

This document contains solutions to selected exercises from the book “Pattern
Recognition” by Richard O. Duda, Peter E. Hart and David G. Stork. Although it
was written in 2001, the second edition has truly stood the test of time—it’s a much-
cited, well-written introductory text to the exciting field of pattern recognition(or
simply machine learning). At the time of writing, the book has close to 40 000
citations according to Google.

While short chapter summaries are included in this document, they are not in-
tended to substitute the book in any way. The summaries will largely be meaningless
without the book, which I recommend buying if you’re interested in the subject.

The solutions and notes were typeset in LATEX to facilitate my own learning
process. Machine learning has rightfully garnered considerable attention in recent
years, and while many online resources are worthwhile it seems reasonable to favor
books when attempting to learn the material thoroughly.

I hope you find my solutions helpful if you are stuck. Remember to make an
attempt at solving the problems yourself before peeking. More likely than not,
the solutions can be improved by a reader such as yourself. If you would like to
contribute, please submit a pull request at https://github.com/tommyod/lml/.

Figure 1: The front cover of [Duda et al., 2000].
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1 Notes from “Pattern Classification”

1.2 Bayesian Decision Theory

• Bayes theorem is

P (ωj | x) =
p(x | ωj)× P (ωj)

p(x)
=

likelihood× prior

evidence
.

The Bayes decision rule is to choose the state of nature ωm such that

ωm = arg max
j
P (ωj | x).

• Loss functions (or risk functions) with losses other than zero-one are possible. In
general, we choose the action λ to minimize the risk R(λ | x).

• The multivariate normal density (the Gaussian) is given by

p(x | µ,Σ) =
1

(2π)d/2 |Σ|1/2
exp

[
−1

2
(x− µ)T Σ−1 (x− µ)

]
.

It is often analytically tractable, and closed form discriminant functions exist.

• If features y are missing, we integrate them out (marginalize) using the sum rule

p(x) =

∫
p(x,y) dy =

∫
p(x | y)p(y) dy.

• In Bayesian belief networks, influences are represented by a directed network. If B
is dependent on A, we add a directed edge A→ B to the network.

Figure 2: A Bayesian belief network. The source is Wikipedia.

1.3 Maximum-likelihood and Bayesian parameter estimation

• The maximum likelihood of a distribution p(x | θ) is given by θ̂ = arg maxθ p(D | θ),
assuming i.i.d. data points and maximizing the log-likelihood, we have

θ̂ = arg max
θ

ln p(D | θ) = arg max
θ

ln
n∏
i=1

p(xi | θ).

Analytical solutions exist for the Gaussian. In general a maximum likelihood esti-
mate may be biased, in the sense that Ex[θ̂] =

∫
θ̂p(x) dx 6= θ.
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• In the Bayesian framework, the parameter θ is expressed by a probability density
function p(θ). This is called the prior distribution of θ, which is updated when new
data is observed. The result is called the posterior distribution, given by

p(θ | D) =
p(D | θ)p(θ)

p(D)
=

p(D | θ)p(θ)∫
p(D | θ)p(θ) dθ

.

The estimate of x then becomes

p(x | D) =

∫
p(x,θ | D) dθ =

∫
p(x | θ,D)p(θ | D) dθ =

∫
p(x | θ)p(θ | D) dθ,

which may be interpreted as a weighted average of models p(x | θ), where p(θ | D)
is the weight associated with the model.

• The Bayesian framework is analytically tractable when using Gaussians. For in-
stance, we can compute p(µ | D) if we assume p(µ) ∼ N (µ0,Σ0). The distribution
p(µ) is called a conjugate prior and p(µ | D) is a reproducing density, since a normal
prior transforms to a normal posterior (with different parameters) when new data
is observed.

• In summary the Bayesian framework allows us to incorporate prior information,
but the maximum-likelihood approach is simpler. Maximum likelihood gives us an
estimate θ̂, but the Bayesian framework gives us p(θ | D)—the full distribution.

• Principal Component Analysis (PCA) yields components useful for representation.
The covariance matrix is diagonalized, and low-variance directions in the hyperellip-
soid are eliminated. The computation is often performed using the Singular Value
Decomposition (SVD).

• Discriminant Analysis (DA) projects to a lower dimensional subspace with optimal
discrimination (and not representation).

• Expectation Maximization (EM) is an iterative algorithm for finding the maximum-
likelihood when data is missing (or latent).

Figure 3: A hidden Markov model. The source is Wikipedia.

• A discrete, first order, hidden Markov model consists of a transition matrixA and an
emission matrix B. The probability of transition from state i to state j is given by
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aij, and the probability that state i emits signal j is given by bij. Three fundamental
problems related to Markov models are:

– The evaluation problem - probability that V T was emitted, given A and B.

– The decoding problem - determine most likely sequence of hidden states ωT ,
given emitted V T , A and B.

– The learning problem - determine A and B given training observations of V T

and a coarse model.

1.4 Nonparametric techniques

• Two conceptually different approaches to nonparametric pattern recognition are:

– Estimation of densities p(x | wj), called the generative approach.

– Estimation of P (wj | x), called the discriminative approach.

• Parzen-windows (kernel density estimation) is a generative method. It places a
kernel function φ : R+ → R+ on every data point xi to create a density estimate

pn(x) =
1

n

n∑
i=1

1

Vn
φ

(‖x− xi‖p
hn

)
,

where ‖·‖p : Rd → R+ is the p-norm (which induces the so-called Minkowski metric)
and hn > 0 is the bandwidth.

• k-nearest neighbors is a discriminative method. It uses information about the k
nearest neighbors of a point x to compute P (wj | x). This automatically uses more
of the surrounding space when data is sparse, and less of the surrounding space
when data is dense. The k-nearest neighbor estimate is given by

P (wj | x) =
# samples labeled wj

k
.

• The nearest neighbor method uses k = 1. It can be shown that the error rate P of
the nearest neighbor method is never more than twice the Bayes error rate P ∗ in
the limit of infinite data. More precisely, we have P ∗ ≤ P ≤ P ∗(2− c

c−1
P ∗).

• In some applications, careful thought must be put into metrics. Examples include
periodic data on R/Z and image data where the metric should be invariant to small
shifts and rotations. One method to alleviate the problems of using the 2-norm as a
metric on images is to introduce the tangent distance. For an image x′, the tangent
vector of a transformation F (such as rotation by an angle αi) is given by

TVi = F (x′;αi)− x′.
If several transformations are available, their linear combination may be computed.
For each test point x, we search the tangent space for the linear combination mini-
mizing the metric. This gives a metric D(x,x′) which is invariant to transformations
such as small rotations and translations, compared to the 2-norm.

• Reduced Coloumb energy networks use ideas from both Parzen windows and k-
nearest neighbors. It adjusts the size of the window so that it is less than some
maximal radius, while not touching any observation of a different class. This cre-
ates “basins of attraction” for classification.
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1.5 Linear discriminant functions

• A linear discriminant function splits the feature space in two using a hyperplane.
The equation for a hyperplane is given by

g(x) = ωTx+ ω0 = aTy =
(
ω0 ω

)(1
x

)
,

where ω0 is the bias. The expression aTy is called the augmented form.

Figure 4: Linear discriminant functions. The source is Wikipedia.

• A linear machine assigns a point x to state of nature ωi if

gi(x) ≥ gj(x)

for every other class j. This leaves no ambiguous regions in the feature space.

• By introducing mappings y = h(x) to higher- or lower-dimensional spaces, non-
linearities in the original x-space may be captured by linear classifiers working in
y-space. An example is y = h(x) = exp(−xTx) if data from one class is centered
around the origin. Another example is transforming periodic data with period P
from 0 ≤ x < P to y by use of the functions

y1 = cos (2πx/P ) y2 = sin (2πx/P ) .

• Several algorithms may be used to minimize an error function J(a). Two popular
choices are gradient descent and Newton descent.

– Gradient descent moves in the direction of the negative gradient. It is often
controlled by a step length parameter η(k), which may decrease as the iteration
counter k increases. The update rule is given by

a← a− η(k)∇J(a).

– Newton descent also moves in the direction of the negative gradient, but the
optimal step length is computed by linearizing the function ∇J(a) (or, equiv-
alently, a second order approximation of J(a)). The update rule is given by

a← a−H−1∇J(a).
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• Criterion functions for linearly separable data sets include:

– The Perceptron function
∑

y∈Y(−aTy), which is not smooth.

– The squared error with margin, given by
∑

y∈Y(aTy − b)2/ ‖y‖2.

• The Mean Squared Error (MSE) approach may be used, but it is not guaranteed to
yield a separating hyperplane—even if one exists.

– The MSE solution is found analytically by the pseudoinverseA† =
(
ATA

)−1
AT .

The pseudoinverse should never be used explicitly because it’s numerically
wasteful and unstable. It represents the analytical solution to the problem

min
x
eTe = min

x
(b−Ax)T (b−Ax) ,

which is solved by x = A†b.

– The MSE approach is related to Fisher’s linear discriminant for an appropriate
choice of margin vector b.

– LMS may be computed using matrix procedures (never use the pseudoinverse
directly) or by the gradient descent algorithm.

– Ho-Kashyap procedures will return a separating hyperplane if one exists.

• Linear programming (LP) may also be used to find a separating hyperplane. Several
reductions are possible by introducing artificial variables.

– Minimizing the Perceptron criterion function may be formulated as an LP, and
the result is typically decent even if a separating hyperplane does not exist.

• Support Vector Machines (SVM) find the minimum margin hyperplane. This is a
quadratic programming (QP) problem, and the dual problem is easier to solve than
the primal problem.

1.6 Multilayer Neural Networks

Figure 5: A three-layer neural network with bias. The source is Wikipedia.

• The feedforward operation on a d− nH − c three-layer neural network is defined by
the following equation for the output

zk = f

(
nH∑
j=1

wkjf

(
d∑
i=1

wjixi + wj0

)
+ wk0

)
.
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- The Kolmogorov-Arnold representation theorem implies that any continuous func-
tion from input to output may be expressed by a three layer d − nH − c neural
network with sufficiently many hidden units.

• Backpropagation learns the weights w by the gradient descent equation wn+1 =
wn− η∇J(wn). The gradient, or derivative, is found by repeated application of the
chain rule of calculus. Several protocols are available for backpropagation: stochas-
tic, batch and on-line.

– Backpropagation may be thought of as feature mapping. While the inputs xi
are not necessarily linearly separable, the outputs yj of the hidden units become
linearly separable as the weights are learned. The final linear discriminant
works on this data instead of the xi.

• Practical tips for improving learning in neural networks include: standardizing fea-
tures, adding noise and data augmentations, initializing weights to random values
in the range −1/

√
d < wji < 1/

√
d, using momentum in the gradient descent algo-

rithm, adding weight decay (equivalent to regularization) while learning, training
with hints (output units which are subsequently removed) and experimenting with
various error functions.

• Second order methods for learning the weights include

– Newtons method – uses H in addition to ∇J(w).

– Quickprop – two evaluations of ∇J(w) to approximate a quadratic.

– Conjugate gradient descent – uses conjugate directions, which consists of
a series of line searches. A given search direction does not spoil the result of
the previous line searches. This is equivalent to a “smart momentum.”

• Other networks include:

– Convolutional Neural Networks (CNNs) – translation invariant, has achieved
great success on image data.

– Recurrent Neural Networks (RNNs) – the output of the previous prediction is
fed into the subsequent prediction. This simulates memory, and RNNs have
been successful on time series data.

– Cascade correlation – a technique where the topology is altered by adding more
units until the performance is sufficiently good.

1.7 Stochastic methods

• Stochastic methods are used to search for optimal solutions when techniques such
as gradient descent are not viable. For instance if the model is very complex, has a
discrete nature where gradients are not available, or if there are time constraints.

• Simulated annealing is an optimization technique. As an example: to minimize the
error E(s), where s ∈ [−1, 1]n, we change a random entry of s.

– If the change produces a better result, then keep the new s.

– If the change does not produce a better result, we still might keep the change.

The probability of keeping a change which increases the error E(s) is a function
of the temperature T , which typically decreases exponentially as the algorithm pro-
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gresses. Initially simulated annealing is a random search, and as the temperature
progresses it becomes a greedy search.

• Deterministic simulated annealing replaces discrete si with analog (continuous) si.
This forces the other magnets sk (k 6= i) to determine si

si = f(T, `i) = tanh

(
`i
T

)
.

As T → 0, the tanh(·) sigmoid function converges to a step function.

• Boltzmann networks (or Boltzmann machines) employ simulated annealing in a net-
work to make predictions. First, weights wij are learned so that inputs sj ∈ αi

lead to correct outputs sk ∈ αo during classification. In the classification phase, the
inputs αi are clamped (fixed), and simulated annealing produces outputs αo. If the
weights wij are learned correctly, then the algorithm will produce good classifica-
tions.

– Boltzmann networks are able to perform pattern completion.

Figure 6: A non-restricted Boltzmann machine. The source is Wikipedia.

• Evolutionary methods take a population of classifiers through many generations. In
each generation, new classifiers (offspring) are produced from the previous genera-
tion. The best classifiers are subject to (1) replication, (2) crossover and (3) muta-
tion to produce offspring. The classifiers may be encoded as 2-bit chromosomes of
length L. The bits represent some property of the classifier.

• Genetic programming is the process of modifying formulas such as

[(−x1) + x2] / [(lnx3)− x2]

by evolutionary methods, mutating variables and operators and performing crossovers.

1.8 Nonmetric methods

• A decision tree typically splits the feature space along the axes if the data is numeric,
and works well for non-metric (categorical, or nominal) data as well. To implement
a decision tree, one must consider

– The number of splits made per node (typically 2, since a higher branching
factor B may be reduced to B = 2 anyway).
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– How to choose an attribute to split on – often solved using information gain.

– When a node should be declared a leaf node.

– How to handle missing data.

• To decide which attribute to split on, an impurity function is defined for a node
N consisting of training samples from various categories ω1, . . . , ωC . The impurity
function should be 0 when all samples in node N are from the same category ωj,
and peak when the samples are uniformly drawn from the C categories.

Two examples of impurity functions are entropy impurity and Gini impurity, which
are respectively defined as

i(N) = −
C∑
j=1

P (ωj) lnP (ωj) i(N) =
C∑
j=1

P (ωj)
∑
k 6=j

P (ωk) =
C∑
j=1

P (ωj) [1− P (ωj)] .

A split is chosen so that it maximizes the decrease in impurity, i.e.

∆i(N) = i(N)− [PL i(NL) + (1− PL) i(NR)] .

The above equation says that the change in impurity equals the original impurity at
node N minus the weighted average of the impurity of the left and right child node.

• Other considerations in decision trees include:

– Pruning – simplifying the tree after training (bypassing the horizon effect).

– Penalizing complexity – regularization of the tree structure.

– Missing attributes – for instance using (1) surrogate splits or (2) sending a
training sample down every path and then performing a weighted average.

• Four string problems in pattern classification are:

– Matching: naive matching is slow, the Boyer-Moore string matching algorithm
is much more efficient. It operates by increasing the shift s of x using two
heuristics in parallel: the bad-character heuristic and the good-suffix heuristic.

– Edit distance: a way to compare the “distance” between strings by counting
the number of insertions, deletions and substitutions required to transform x
to y. If all costs are equal, then D(x,y) is a metric. A dynamic programing
algorithm is used to compute edit distance.

– Matching with errors is the same as matching, but using for instance the
edit distance to find approximate matches. The problem is to find a shift s
that minimizes the edit distance.

– Matching with the “don’t care”-symbol ∅: same as matching, but the
∅-symbol matches any character in the alphabet A.

• A grammar G = (A, I,S,P) consists of symbols A, variables I, a root symbol S
and productions P . Concrete examples include English sentences and pronunciation
of numbers. There are several types of grammars, and they constitute a hierarchy

Type 3 ⊂ Type 2 ⊂ Type 1 ⊂ Type 0.

The types are respectively called regular, context free, context sensitive and free.

– A central question is whether a string x is in the language L generated by the
grammar G, i.e. whether x ∈ L(G). This can be answered using bottom-up
parsing, which employs the product rules P backwards.
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1.9 Algorithm-independent machine learning

• The no free lunch theorem states that using the off-training set error, and assuming
equally likely target functions F (x), no algorithm is universally superior. Any
statement about algorithms is a statement about the target function F (x).

• The ugly duckling theorem states that no feature representation is universally supe-
rior. If pattern similarity is based on the number of possible shared predicates (f1

OR f2, etc) then any two patterns are equally similar. The best feature representa-
tion consequently depends on the target function F (x).

• The minimum description length is a version of Occam’s razor. In this framework,
the best hypothesis h (model) is the one compressing the data the most, i.e. the
minimizer h∗ of

K(h,D) = K(h) +K(D using h),

where K(·) is the Kolmogorov complexity (length of smallest computer program).

• The bias-variance trade-off is exemplified by the equation

ED
[
(g(x;D)− F (x))2] = ED [g(x;D)− F (x)]2︸ ︷︷ ︸

bias2

+ED
[
(g(x;D)− E [g(x;D)])2]︸ ︷︷ ︸

variance

,

and informally states that there is always a trade-off between bias and variance. In
the regression setting, the bias is the average error over many data sets, while the
variance is the variability of the estimate over many data sets. High variance typi-
cally implies many parameters (over-fitting), while high bias implies few parameters
(under-fitting).

• The Jackknife re-sampling method involves removing the ith data point from D =
{x1,x2, . . . ,xn} and computing a statistic. This is done for every data point, and
the final result is averaged. From this the variance of the statistic may be assessed.

• The bootstrap method involves re-samling n data points from Dn with replacement
B times. The statistic is computed B times, and is then averaged.

θ̂∗(·) =
1

B

B∑
b=1

θ̂∗(b) varboot[θ̂] =
1

B

B∑
b=1

(
θ̂∗(b) − θ̂∗(·)

)2

• Bagging consists of taking an average over model predictions. Boosting uses the
result of model hn to train model hn+1. Informally, the next model prioritizes data
in D which the sequence of models so far has not performed well on.

– Adaptive Boosting (AdaBoost) is a well known boosting algorithm. It samples
data xi using probability weights wi. If a model hn does a poor job, the
associated weights wn+1

i are increased exponentially. This causes exponential
error decay on training data.

• Learning with queries involves the model choosing the next data point to learn from.
It assumes the existence of an oracle which can give the correct answer to any input,
but using this oracle might be costly. Efficient learning involves choosing points
where the classifier is uncertain, i.e. where P (ω1 | x) ≈ P (ω2 | x).
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• Maximum-likelihood model comparison picks the maximum of

P (D | hi) ' P (D | θ̂, hi)︸ ︷︷ ︸
best-fit likelihood

P (θ̂ | hi)∆θ︸ ︷︷ ︸
Occam factor

= P (D | θ̂, hi)
∆θ

∆0θ
,

where ∆θ is the volume of the possible parameter space given the data D, and ∆0θ
is the prior volume of the possible parameter before seeing data. Applying a few
simplifications, this becomes a two step process: (1) compute maximum likelihood
estimate θ̂ from the data, then (2) compute the likelihood value given θ̂.

• Mixture models can be used to combine classifiers using discriminant functions.
The final discriminant function is g =

∑k
i=1wi gi(x,θi), and an underlying mixture

model of the following form is assumed:

p(y | x,Θ0) =
k∑
r=1

P (r | x,θ0
0)︸ ︷︷ ︸

prob. of model r

p(y | x,θ0
r)

1.10 Unsupervised learning and clustering

• Unsupervised learning is a difficult problem. A mixture model may not be identi-
fiable, which happens when θ cannot be determined uniquely even in the limit of
infinite data. There exist necessary conditions for ML solutions to P̂ (ωi) and θ̂i, but
they are not sufficient to guarantee that a maximum is found. Singular solutions
may occur, since the likelihood can be made arbitrarily large when µi is placed on
a data point and σi → 0. A Bayesian approach is possible, but rarely feasible.

• The k-means algorithm is a simple procedure for finding µ1, . . . ,µk. A fuzzy k-
means algorithm also exists, in which membership categorization is not binary.

• It is better to find structure in data than to impose it. A metric d(·, ·) and a
distance threshold d0 may be defined, which may then be used to group points.
This approach is sensitive to the effect of individual data points. Standardizing
data using yi = (xi − µk)/σk may or may not be beneficial, and the same goes for
PCA.

• Many criterion functions are available for clustering, e.g. sum of square error

Je =
c∑
i=1

∑
x∈Di

‖x−mi‖2 .

Criterion functions based on the size of scatter matrices (LDA) are

Je = tr [SW ] , Jd = det [SW ] and Jf = tr
[
S−1
T SW

]
.

• Hierarchical clustering represents hierarchical (clusters within clusters) structure in
a dendrogram, see Figure 7 on page 13. Two approaches are possible: agglomerative
(merging) og divisive (splitting). Many distance measures are available.

– Using dmin(Di,Dj) and agglomerative clustering, a minimal spanning tree (MST)
is built from the data.
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Figure 7: A dendrogram representation of hierarchical clustering. The source is
Wikipedia.

• Competitive learning is a clustering algorithm implemented by a neural network.
The data x ∈ Rd is augmented to x := (1,x) and normalized so that it lies on
a (d + 1)-dimensional sphere. The weight w∗ = arg maxww

Tx is updated to be
more similar to the sample x. The algorithm can also create new clusters wj if
certain conditions are met. It’s suitable for on-line learning, but will not necessarily
converge with constant learning rate.

• PCA can be implemented as a 3-layer neural network autoencoder. The first k
eigenvalues/eigenvectors of X solves the minimization of ‖X −X ′k‖, where X ′k is
a rank k approximation of X. Non-linear PCA is an extension of the idea, using a
5-layer non-linear neural network autoencoder.

Figure 8: A neural network autoencoder with 5 layers. The source is Wikipedia.

• Self-organizing feature maps transform from a high dimensional space to low dimen-
sional one, while preserving local topological information. They are implemented as
neural networks, and a key idea is to update neighboring areas when learning the
map. An additional benefit is that they automatically place more points in regions
of high probability.
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2 Solutions to “Pattern Classification”

This section contains solutions to problems in “Pattern Classification” by Duda et al.
There are approximately 8 solved problems from each chapter.

2.2 Bayesian Decision Theory

Problem 2.6

a) We want the probability of choosing action α2 to be smaller than, or equal to, E1,
given that the true state of nature is ω1. Let’s assume that µ1 < µ2 and that the
decision threshold is x∗, so we decide α2 if x > x∗. We then have

P (α2 | ω1) ≤ E1

p(x > x∗ | ω1) ≤ E1[
1−

∫ x∗

0

p(x | ω1) dx

]
≤ E1

We let Φ : R → [0, 1] denote the cumulative Gaussian distribution, and Φ−1 :
[0, 1]→ R it’s inverse function. Making use of Φ we write

1− Φ

(
x∗ − µ1

σ1

)
≤ E1

x∗ ≥ µ1 + σ1Φ−1 (1− E1) .

If the desired error is close to zero, then x∗ goes to positive infinity. If the desired
error is close to one, then x∗ goes to negative infinity.

b) The error rate for classifying ω2 as ω1 is

P (α1 | ω2) = p(x ≤ x∗ | ω2) =

∫ x∗

0

p(x | ω2) dx = Φ

(
x∗ − µ2

σ2

)
.

Making use of x∗ from the previous problem, we obtain

Φ

(
µ1 + σ1Φ−1 (1− E1)− µ2

σ2

)
= Φ

(
µ1 − µ2

σ2

+
σ1

σ2

Φ−1 (1− E1)

)
.

c) The overall error rate becomes

P (error) = P (α1, ω2) + P (α2, ω1)

= P (α1 | ω2)P (ω2) + P (α2 | ω1)P (ω1)

=
1

2
[P (α1 | ω2) + P (α2 | ω1)]

=
1

2

[
E1 + Φ

(
µ1 − µ2

σ2

+
σ1

σ2

Φ−1 (1− E1)

)]
.
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In the last equality we used the results from the previous subproblems.

d) We substitute the given values into the equations, and obtain x∗ ≈ 0.6449. The
total error rate is P (error) ≈ 0.2056.

e) The Bayes error rate, as a function of x∗, is given by

P (error) = P (α2 | ω1)P (ω1) + P (α1 | ω2)P (ω2)

=
1

2
[p(x > x∗ | ω1) + p(x < x∗ | ω2)]

=
1

2

[(
1− Φ

(
x∗ − µ1

σ1

))
+ Φ

(
x∗ − µ2

σ2

)]
The Bayes error rate for this problem is depicted in Figure 9.

4 3 2 1 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

p(x| 1)
p(x| 2)
P(error)
x *

Figure 9: Graf accompanying problem 2.6.

Problem 2.12

a) A useful observation is that the maximal value P (ωmax | x) is greater than, or equal
to, the average. Therefore we obtain

P (ωmax | x) ≥ 1

c

c∑
i=1

P (ωi | x) =
1

c
,

where the last equality is due to probabilities summing to unity.

b) The minimum error rate is achieved by choosing ωmax, the most likely state of nature.
The average probability of error over the data space is therefore the probability that
ωmax is not the true state of nature for a given x, i.e.

P (error) = Ex [1− P (ωmax | x)] = 1−
∫
P (ωmax | x)p(x) dx.

c) We see that

P (error) = 1−
∫
P (ωmax | x)p(x) dx ≤ 1−

∫
1

c
p(x) dx = 1− 1

c
=
c− 1

c
,

where we have used the fact that
∫
p(x) dx = 1.

d) A situation where P (error) = (c − 1)/c arises when P (ωi) = 1/c for every i. Then
the maximum value is equal to the average value, and the inequality in problem a)
becomes an equality.
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Problem 2.19

a) The entropy is given by H [p(x)] = −
∫
p(x) ln p(x) dx. The optimization problem

gives the synthetic function (or Lagrange function)

Hs = −
∫
p(x) ln p(x) dx+

q∑
k=1

λk

(∫
bk(x)p(x) dx− ak

)
,

and since a probability density function has
∫
p(x) dx = 1 we add an additional

constraint for k = 0 with b0(x) = 1 and ak = 1. Collecting terms we obtain

Hs = −
∫
p(x) ln p(x) dx+

q∑
k=0

λk

∫
bk(x)p(x) dx−

q∑
k=0

λkak

= −
∫
p(x)

[
ln p(x)−

q∑
k=0

λkbk(x)

]
dx−

q∑
k=0

λkak,

which is what we were asked to show.

b) Differentiating the equation above with respect to p(x) and equating it to zero we
obtain

−
∫ (

1

[
ln p(x)−

q∑
k=0

λkbk(x)

]
+ p(x)

[
1

p(x)

])
dx = 0.

This integral is zero if the integrand is zero for every x, so we require that

ln p(x)−
q∑

k=0

λkbk(x) + 1 = 0,

and solving this equation for p(x) gives the desired answer.

Problem 2.21

We are asked to compute the entropy of the (1) Gaussian distribution, (2) triangle distri-
bution and (3) uniform distribution. Every probability density function (pdf) has µ = 0
and standard deviation σ, and we must write every pdf parameterized using σ.

Gaussian We use the definition H [p(x)] = −
∫
p(x) ln p(x) dx to compute

H [p(x)] = −
∫

1√
2πσ

exp

(
−1

2

x2

σ2

)[
ln

(
1√
2πσ

)
− 1

2

x2

σ2

]
dx.

Let us denote the constant by K = 1√
2πσ

to simplify notation. We obtain

−
∫
K exp

(
−1

2

x2

σ2

)[
lnK − 1

2

x2

σ2

]
dx =

−K lnK

∫
exp

(
−1

2

x2

σ2

)
dx+K

∫
1

2

x2

σ2
exp

(
−1

2

x2

σ2

)
dx

16



The first term evaluates to − lnK, since it’s the normal distribution with an additional
factor − lnK. The second term is not as straightforward. We change variables to y =
x/
(√

2σ
)
, and write it as

K

∫
y2 exp

(
−y2

)√
2σ dy,

and this integral is solved by using the following observation (from integration by parts):∫
1e−x

2

dx = xe−x
2
∣∣∣︸ ︷︷ ︸

0 at ±∞

−
∫
x(−2x)e−x

2

dx.

Using the above equation in reverse, we integrate as follows:

K
√

2σ

∫
y2 exp

(
−y2

)
dy = K

√
2σ

1

2

∫
exp

(
−y2

)
dy = K

√
2σ

1

2

√
π =

1

2

To recap, the first integral evaluated to − lnK, and the second evaluated to 1
2
. The

entropy of the Gaussian is therefore 1/2 + ln
√

2πσ.

Triangle The triangle distribution may be written in the form

f(x) =

{
h− hx

b
if |x| < b

0 if |x| ≥ b,

where h is the height and b is the width to the left of, and to the right of, x = 0.

Since the integral must evaluate to unity, we impose the constraint hb = 1 and obtain
f(x; b) = 1

b

(
1− x

b

)
. We wish to parameterize the triangle distribution using the standard

deviation σ instead of width b. We can use var(X) = E(X2)−E(X)2 to find the variance,
since in this case E(X)2 = µ2 = 0 as a result of the function being centered on x = 0.
Computing E(X2) yields b2/6, so b2 = 6σ2. The revised triangle distribution then becomes

f(x;σ) =

{
1√
6σ

(
1− x√

6σ

)
if |x| <

√
6σ

0 if |x| ≥
√

6σ.

We set k = 1√
6σ

to ease notation. Due to symmetry, we compute the entropy as

H [f(x;σ)] = −2

∫ √6σ

0

k (1− kx) ln (k (1− kx)) dx.

Changing variables to y = 1− kx we obtain

− 2

∫ x=
√

6σ

x=0

ky (ln k + ln y) dx = −2

∫ y=0

y=1

ky (ln k + ln y)

(
1

−k

)
dy

− 2

∫ 1

0

y (ln k + ln y) dy = −2

∫ 1

0

y ln k dy − 2

∫ 1

0

y ln y dy = −2

(
ln k − 1

4

)
,

where the last integral can be evaluated using integration by parts. The entropy of the
triangle distribution turns out to be 1/2 + ln

√
6σ.
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Uniform Using the same logic as with the triangle distribution, we first normalize a
uniform distribution, and then parameterize by σ, to obtain

u(x;σ) =


1

2b
if |x| < b

0 if |x| ≥ b

 =


1

2
√

3σ
if |x| <

√
3σ

0 if |x| ≥
√

3σ.

Computing the entropy is more straightforward than in the case of the Gaussian and the
triangle distribution. We simply evaluate the integral as

H [p(x)] = 2

∫ √3σ

0

1

2
√

3σ
ln

1

2
√

3σ
dx = ln 2

√
3σ.

Let’s briefly compare the results of our computations as follows:

HGaussian(σ) = 1/2 + ln
√

2πσ =
1

2
+ ln
√

2π + lnσ ≈ 1.4189 + lnσ

HTriangle(σ) = 1/2 + ln
√

6σ =
1

2
+ ln
√

6 + ln σ ≈ 1.3959 + lnσ

HUniform(σ) = ln 2
√

3σ = 0 + ln 2
√

3 + ln σ ≈ 1.2425 + lnσ

This verifies that out of the three distributions, the Gaussian has the maximal entropy.
This was expected, since the Gaussian maximizes the entropy over any continuous prob-
ability density function having a prescribed mean and variance.

Problem 2.23

a) To solve this problem, we need to find the inverse matrix, the determinant, and
w = x− µ.

Σ−1 =
1

21

1 0 0
0 5 −2
0 −2 5

 det Σ = 21 w = x− µ =

−0.5
−2
−1


The number of dimension d is 3. The solution is

p(x) =
1

(2π)
3
2 21

1
2

exp

(
−1

2
wTΣ−1w

)
=

1

(2π)
3
2 21

1
2

exp

(
−1

2

1

21

69

4

)
.

b) The eigenvalues of Σ are λ1 = 3, λ1 = 7 and λ1 = 21. The corresponding eigenvec-
tors are v1 = (0, 1,−1)T/

√
2, v2 = (0, 1, 1)T/

√
2 and v3 = (1, 0, 0)T . The whitening

transformation is therefore given by

Aw = ΦΛ−1/2 =
1√
2

 0 0
√

2
1 1 0
−1 1 0

−√3 0 0

0 −
√

7 0

0 0 −
√

21

 .

The rest of the numerical computations are skipped.
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c) Skipped.

d) Skipped.

e) We are going to examine if the p.d.f is unchanged when vectors are transformed
with T Tx and matrices with T TΣT . Let’s consider the term (x− µ)T Σ−1 (x− µ)
in the exponent first. Substituting x 7→ T Tx, µ 7→ T Tµ and Σ 7→ T TΣT , we
observe that (

T Tx− T Tµ
)T (

T TΣT
)−1 (

T Tx− T Tµ
)(

T T (x− µ)
)T (

T TΣT
)−1

T T (x− µ)

(x− µ)T T
(
T TΣT

)−1
T T (x− µ)

(x− µ)T TT−1Σ−1T−TT T (x− µ)

(x− µ)T Σ−1 (x− µ) ,

where we have used (AB)T = BTAT and (AB)−1 = B−1A−1, which are basic
facts from linear algebra. The density remains proportional when applying a linear
transformation, but not unscaled, since the proportionality term |Σ|1/2 becomes∣∣T TΣT

∣∣1/2 =
∣∣T T

∣∣1/2 |Σ|1/2 |T |1/2 = |T | |Σ|1/2.

f) Here we use the eigendecomposition of a symmetric matrix. We assume that Σ is
positive definite such that every eigenvalue is positive. We write Σ = ΦΛΦT and
apply the whitening transformation.

AT
wΣAw = AT

wΦΛΦTAw =
(
ΦΛ−1/2

)T
ΦΛΦT

(
ΦΛ−1/2

)
The matrix Φ is orthogonal, so it’s transpose is the inverse. Using this fact and
proceeding, we obtain(

ΦΛ−1/2
)T

ΦΛΦT
(
ΦΛ1/2

)
=
(
Λ−1/2

)T
ΛΛ−1/2 = Λ−1/2ΛΛ−1/2 = I,

so the covariance is proportional to the identity matrix, as we were tasked to show.
The normalization constant becomes 1 , since the proportionality term becomes
|T | |Σ|1/2 under the transformation, and

|T | |Σ|1/2 =
∣∣ΦΛ−1/2

∣∣ |Σ|1/2 =
∣∣ΦΛ−1/2

∣∣ ∣∣ΦΛΦT
∣∣1/2 = |I| = 1.

Problem 2.28

a) We prove that if

p(xi − µi, xj − µj) = p(xi − µi)p(xj − µj),

then
σij = E [(xi − µi)(xj − µj)] = 0.
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With words: we prove that statistical independence implies zero covariance.

E [(xi − µi)(xj − µj)] =∫∫
p(xi − µi, xj − µj)(xi − µi)(xj − µj) dxjdxi =∫∫
p(xi − µi)p(xj − µj)(xi − µi)(xj − µj) dxjdxi∫

p(xi − µi)(xi − µi)
(∫

p(xj − µj)(xj − µj) dxj
)
dxi

If the term in the parenthesis is identically zero, then σij = 0. This is indeed true,
since the integral is∫

p(xj − µj)(xj − µj) dxj = E [(xj − µj)] = E [xj]− E [µj] = µj − µj = 0.

b) We wish to prove the converse of a) in the Gaussian case. To achieve this, we must
show that σij = 0 when

p(xi − µi, xj − µj) = p(xi − µi)p(xj − µj).

Let’s simplify the notation to x and y instead of xi and xj. If σxy = 0, then the
covariance matrix is a diagonal matrix D = diag(σ2

x, σ
2
y). We write the probability

p(xi − µi, xj − µj) as p(x, y), where the means µx and µy are both zero. We write

p(x, y) =
1

(2π)2/2σxσy
exp

(
−1

2
xTD−1x

)
=

1

(2π)2/2σxσy
exp

(
−1

2

(
x2/σ2

x + y2/σ2
y

))
=

1

(2π)1/2σx
exp

(
−1

2

(
x2/σ2

x

)) 1

(2π)1/2σy
exp

(
−1

2

(
y2/σ2

y

))
= p(x)p(y).

This demonstrates that when σxy = 0, the covariance matrix is diagonal, and the
Gaussian factors into products and we have statistical independence.

c) This problem asks us to find a counterexample of the above, i.e. an example showing
that σxy ; p(x, y) = p(x)p(y). The probability density function

p(x, y) = K
1

1 + x2 + y2
, K−1 =

∫∫
R

1

1 + x2 + y2
dxdy

achieves this. The covariance is zero, since

σxy = E [(x− 0)(y − 0)] =

∫∫
R

xy

1 + x2 + y2
dxdy =

∫∫
R
I(x, y) dxdy

is zero because the integrand I(x, y) is an odd function.

On the other hand, p(x, y) does not factor into p(x)p(y). We have proved that
σxy ; p(x, y) = p(x)p(y) by finding a counterexample.
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Problem 2.31

a) We’ll assume that µ1 < µ2. Since σ1 = σ2 = σ, the minimum probability of error is
achieved by setting the decision threshold to x∗ = (µ1 + µ2)/2. When following the
derivation below, it is illuminating to draw the real line and two Gaussians. The
probability of error is

Pe = P (x ∈ R2, ω1) + P (x ∈ R1, ω2)

= P (x ∈ R2 | ω1)P (ω1) + P (x ∈ R1 | ω2)P (ω2)

=

∫
R2

p(x | ω1)P (ω1) dx+

∫
R1

p(x | ω2)P (ω2) dx

=
1

2

(∫ ∞
x∗

p(x | ω1) dx+

∫ x∗

0

p(x | ω2) dx

)
=

∫ ∞
x=(µ1+µ2)/2

p(x | ω1) dx

=

∫ ∞
x=(µ1+µ2)/2

1√
2πσ

exp

(
−1

2

(x− µ1)2

σ2

)
dx.

Changing variables to u = (x− µ1)/σ and using dx = σ du yields

Pe =

∫ ∞
u=a

1√
2π

exp
(
−u2/σ2

)
du,

where a = (x− µ1)/σ = ((µ1 + µ2)/2− µ1)/σ = (µ2 − µ1)/2σ, as required.

b) Using the inequality stated in the problem, it remains to show that

lim
a→∞

f(a) = lim
a→∞

1√
2πa

exp
(
−a2/σ2

)
= 0.

This holds if the derivative is negative as a→∞, since then the function decreases
as a→∞. The derivative of f(a) is

f ′(x) = − exp
(
−a2/2

)(
1− 1

a2

)
,

which is negative as long as |a| ≥ 1. Alternatively, we can simple note that both
factors in f(a) go to zero as a→∞.

Problem 2.43

a) pij is the probability that the i’th entry in the vector x equals 1, given a state of
nature ωj.

b) We decide ωj if P (ωj | x) is greater than P (ωk | x) for every k 6= j.

P (ωj | x) ∝ p(x | ωj)P (ωj)

We use the equation p(x | ωj) =
∏d

i=1 p(xi | ωj), which follows from the fact that
the entries are statistically independent. Furthermore, we see that

p(xi | ωj) =

{
pij if xi = 1

1− pij if xi = 0

}
= pxiij (1− pij)1−xi .
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Now we take logarithms and obtain

ln

(
d∏
i=1

p(xi | ωj)P (ωj)

)
=

d∑
i=1

ln p(xi | ωj) + lnP (ωj)

=
d∑
i=1

ln pxiij (1− pij)1−xi + lnP (ωj)

=
d∑
i=1

xi ln pij + (1− xi) ln(1− pij) + lnP (ωj),

which is easily arranged to correspond with the expression in the problem statement.
In summary we choose the class ωj if the probability of that class given the data
point exceeds the probability of every other class.
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2.3 Maximum-likelihood and Bayesian parameter estimation

Problem 3.2

a) The maximum likelihood estimate for θ is maxθ p(D | θ) = maxθ
∏n

i=1 p(xi | θ). The
probability of a single sample p(xi | θ) is given by the expression

p(xi | θ) =

{
1/θ if 0 ≤ xi ≤ θ

0 if xi > θ.

Clearly the product
∏n

i=1 p(xi | θ) is zero if any xi is larger than θ. Therefore θ
must be larger than, or equal to, maxk xk for the likelihood to be non-zero.

On the other hand, the product equals 1/θn, and taking logarithms we obtain
−n ln θ. This function is maximized when θ is as small as possible.

The conclusion is that θ must be greater than or equal to maxk xk to avoid the
likelihood being zero, and also as small as possible to maximize the likelihood.
Therefore the maximum likelihood is given by θ̂ = maxk xk = maxD.

b) Skipping this plot. The explanation of why the other data points are not needed is
given in part a) of the problem.

Problem 3.4

The maximum likelihood estimate is

p(D | θ) =
n∏
k=1

p(x | θ) =
n∏
k=1

d∏
i=1

θxiki (1− θi)(1−xik) .

The log likelihood `(θ) is ln p(D | θ), which is given by the expression

`(θ) =
n∑
k=1

d∑
i=1

xik ln θi + (1− xik) ln (1− θi) .

Differentiating `(θ) with respect to θi, every term in the sum
∑d

i=1 vanishes except the
i’th. We perform the differentiation and equate the result to zero, which yields

d`(θ)

θi
=

n∑
k=1

[
xik
θi

+
xik − 1

1− θi

]
=

n∑
k=1

[xik − θi] = 0.

Solving this for θi gives us θi = n−1
∑n

k=1 xik, or in vector notation, θ = n−1
∑n

k=1 xk.
This is what the problem asked us to show.
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Problem 3.13

a) Familiarity with summation notation helps when solving this problem. The matrix-
vector product Aa may be written as

∑
j Aijaj. The sum is typically taken over

repeated indices, but we will explicitly typeset the summation index.

Let’s write the outer product as abT = ai ⊕ bj, the trace as tr(A) =
∑

iAii and

tr(abT ) =
∑
i=j

ai ⊕ bj =
∑
i

aibi.

We note that the effect of
∑

i=j on a summand is to replace i by j, or vice versa.

In summation notation, aTAa =
∑

i

∑
j Aijajai. Using the definitions above, and

recalling that Aa is just a vector with value
∑

j Aijaj in the i’th index, we see that

tr(AaaT ) =
∑
i=k

(∑
j

Aijaj

)
⊕ ak =

∑
i

∑
j

Aijajai.

b) The likelihood is given by the expression

p(D | θ) =
n∏
k=1

|Σ−1|1/2

(2π)d/2
exp

(
−1

2
(xk − µ)T Σ−1 (xk − µ)

)

=
|Σ−1|n/2

(2π)nd/2
exp

(
−1

2

n∑
k=1

(xk − µ)T Σ−1 (xk − µ)

)
.

Applying aTAa = tr(AaaT ) from problem a) yields

p(D | θ) =
|Σ−1|n/2

(2π)nd/2
exp

(
−1

2

n∑
k=1

tr
(
Σ−1 (xk − µ) (xk − µ)T

))
,

and by using tr (A+B) = tr (A)+tr (B) on the exponent we complete the problem.

c) To solve this problem, we make use of two proofs from linear algebra.

(i) The determinant is the product of the eigenvalues, i.e. detA =
∏d

i=1 λi. This
can be proved by taking the determinant of the eigenvalue decomposition of A,
i.e. A = QΛQT , since the determinant of an orthogonal matrix is unity and Λ
has eigenvalues on the diagonal, the result is that detA = |A| =

∏d
i=1 λi.

(ii) The trace is the sum of the eigenvalues, i.e. trA =
∑d

i=1 λi. The proof for this
involves characteristic polynomials, but is not sketched here.

The term involving Σ−1 is transformed in the following way: if A = Σ−1Σ̂, then
|A| = |Σ−1| |Σ̂|. We then write the determinant of the inverse matrix as

∣∣Σ−1
∣∣ =
|A|
|Σ̂|

=

∏d
i=1 λi

|Σ̂|
.
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To transform the exponent, we write

tr

(
n∑
k=1

Σ−1 (xk − µ) (xk − µ)T
)

= tr
(
Σ−1nΣ̂

)
= n tr (A) = n

d∑
i=1

λi.

Substituting these transformation into the previous equation yields the required
expression, which is

p(D | θ) =

(∏d
i=1 λi

)n/2
(2π)nd/2 ˆ|Σ|

n/2
exp

(
−n

2

d∑
i=1

λi

)
. (1)

d) Taking logarithms of Equation (1) above gives us the log-likelihood function

ln p(D | θ) =
n

2

[
d∑
i=1

lnλi − d ln 2π − ln |Σ̂|

]
− n

2

d∑
i=1

λi,

and differentiating it with respect to the eigenvalue λj yields

∂ ln p(D | θ)
∂λj

=
n

2

(
1− λ2

j

)
= 0.

The Hessian matrix (second derivative) is a diagonal matrix with −2λj on the
(j, j)’th entry, so it is negative definite (i.e. xTHx < 0 for every x 6= 0) when
all λj’s are positive. When the Hessian is negative definite, then the solution is a
maximum. Therefore we take λj = 1 as the solution for every j (and not λj = −1,
which is not a maximum point).

If every eigenvalues of A is 1, then A = I. Recall that A = Σ−1Σ̂, so when we
substitute the identity for A we obtain Σ−1Σ̂ = I. The likelihood is maximized
when we take Σ̂ to be n−1

∑n
k=1 (xk − µ) (xk − µ)T , and the proof is complete.

Problem 3.15

a) Starting with Equation (31) from the book, we get rid of σ2
n by substituting the

expression given in Equation (32) to obtain

µn =

[
1

n
σ2 + 1

σ2
0

]
︸ ︷︷ ︸

σ2
n

n

σ2
µ̂n +

[
1

n
σ2 + 1

σ2
0

]
︸ ︷︷ ︸

σ2
n

µ0

σ2
0

.
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We cancel terms, use the dogmatism n0 = σ2/σ2
0, and realize that µ0 = n−1

0

∑0
k=−n0+1 xk.

µn =

[
1

1 + σ2

nσ2
0

]
µ̂n +

[
1

1 +
nσ2

0

σ2

]
µ0

=

[
1

1 + n0

n

]
1

n

n∑
k=1

xk +

[
1

1 + n
n0

]
1

n0

0∑
k=−n0+1

xk

=
1

n+ n0

n∑
k=1

xk +
1

n+ n0

0∑
k=−n0+1

xk =
1

n+ n0

n∑
k=−n0+1

xk.

(a) One interpretation of µn is that it’s a weighted average of the real samples and
the fictitious samples, since

µn =
n

n+ n0

[
1

n

n∑
k=0

n

]
+

n0

n+ n0

[
1

n0

0∑
k=−n0+1

xk

]
=

1

n+ n0

n∑
k=−n0+1

xk.

An interpretation of σ2
n is more straightforward if we consider it’s reciprocal,

the precision σ−2
n . The precision can be written as σ−2

n = nσ−2 +n0σ
−2, so the

number of fictitious samples provides an initial estimate for the precision, and
as more real data points are added the precision is increased linearly.

Problem 3.16

a) The trick is to multiply both terms by I at an opportune moment, expanding the
identity and using (AB)−1 = B−1A−1. We prove the theorem by writing(

A−1 +B−1
)−1

=
(
A−1I + IB−1

)−1
=
(
A−1BB−1 +A−1AB−1

)−1

=
(
A−1 (B +A)B−1

)−1
= B (A+B)−1A.

Replacing the second equality by IA−1 +B−1I = B−1BA−1 +B−1AA−1 would
yield the second quality in the theorem as stated in the problem.

b) The matrices must be square, since we use I = A−1A to prove the first equality,
and I = A−1A to prove the second. The same logic applies to B. In other words,
we require that A has a left-inverse and a right-inverse, and it must therefore be
square.

An alternative approach is to consider the second equality in the theorem directly.
Some algebra reveals that this equality requires A to have a left and right inverse.
It must therefore be square, against since no non-square matrix has a left-inverse
and a right-inverse.

c) The staring point are the equations

Σ−1
n = nΣ−1 + Σ−1

0 and Σ−1
n µn = nΣ−1µ̂n + Σ−1

0 + µ0,

and we wish to solve these equations with respect to Σn and µn. In other words, we
want the functional dependence to be Σn = f (µ̂n,µ0,Σ,Σ0) and µn = (µ̂n,µ0,Σ,Σ0).
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We start with the covariance matrix. To solve for Σn, we write

Σn =
(
Σ−1
n

)−1
=
(
nΣ−1 + Σ−1

0

)−1
= Σ0

(
Σ0 +

1

n
Σ

)−1
1

n
Σ,

where the last equality comes from using(
A−1 +B−1

)−1
= B−1 (B +A)−1A−1.

To solve for the mean µn, we write

µn = ΣnnΣ−1µ̂n + ΣnΣ
−1
0 µ0

=

[
Σ0

(
Σ0 +

1

n
Σ

)−1
1

n
Σ

]
nΣ−1µ̂n +

[
1

n
Σ

(
1

n
Σ + Σ0

)−1

Σ0

]
Σ−1

0 µ0

= Σ0

(
Σ0 +

1

n
Σ

)−1

µ̂n +
1

n
Σ

(
Σ0 +

1

n
Σ

)−1

µ0

Where we made use of both equalities given by the theorem in subproblem a).

Problem 3.24

Our task is to find the maximum likelihood estimate of θ in the Rayleigh distribution,
which is given by the expression

p(x | θ) =

{
2θx exp

(
−θx2

)
if x ≥ 0

0 otherwise.

The log-likelihood function is given by

`(θ) = ln (p(D | θ)) =
n∑
k=1

ln
(
2θx exp

(
−θx2

))
=

n∑
k=1

−θx2
i + ln 2θxi.

Differentiating the log-likelihood with respect to θ and equating it to zero yields

`′(θ) =
n∑
k=1

(
−x2

i +
2xi
2θxi

)
=

n∑
k=1

(
−x2

i +
1

θ

)
=
n

θ
−

n∑
k=1

x2
i = 0,

and solving this equation for θ reveals the desired answer.

Problem 3.32

a) A simple Θ(n2) algorithm is given by

f = 0
f o r i=0 to n−1 do :

f = f + a [ i ] ∗ x∗∗ i
end
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Assuming that the computation of xi requires i−1 flops, the complexity for iteration
i is Θ(i), and the full complexity becomes 1 + 2 + 3 + · · ·+ (n− 1) = Θ(n2).

b) The waste in the algorithm from subproblem a) above stems from having to compute
powers of x many times. If we know xk−1, then xk = xk−1x, and there is no need
to compute xk as x · x · . . . · x︸ ︷︷ ︸

k times

. Define Sk :=
∑n−1

i=k aix
i−k, then

f(x) = S0 = a0 + xS1 = a0 + x (a1 + xS2) = a0 + x (a1 + x (a2 + xS3)) .

Clearly Sk = ak + xSk+1, looping backwards we can use the following algorithm

f = a [ n−1]
f o r i=n−2 to 0 do :

f = a [ i ] + x ∗ f
end

which requires a constant number flops in each iteration. The computational com-
plexity is therefore Θ(n). A specific example when n = 4 is

a0x
0 + a1x

1 + a2x
2 + a3x

3 = a0 + x(a1 + x(a2 + x(a3 + x))),

and the algorithm evaluates this using the right-hand side, from the inside and out.

Problem 3.35

a) The complexity of computing µ̂n is O (nd), where n is the number of data points and
d is the dimensionality of the data. Adding n vectors of length d requires d(n− 1)
floating point operations (flops), diving through by n requires another d flops. The
resulting complexity is therefore d(n− 1) + d = O(nd).

The complexity of computing Cn is O (nd2). For each term in the sum, we compute
the subtraction using d flops, followed by the outer product using d2 flops. This is
done of each of the n terms, so we need n(d + d2) flops to compute the terms. We
then add the terms, requiring d2(n− 1) flops. Diving requires d2 flops. In total, the
cost is n(d+ d2) + d2(n− 1) + d2 ' 2nd2 = O(nd2) flops.

b) We will show that these equations are correct by two different methods.

The recursive definition of µ̂n may be proved by induction. It’s clearly valid for
n = 0, since then it reduces to µ̂0 = x1. The inductive step is

µ̂n+1 = µ̂n +
1

n+ 1
(xn+1 − µ̂n) =

(
1− 1

n+ 1

)
µ̂n +

1

n+ 1
xn+1

=

(
n

n+ 1

)
µ̂n +

1

n+ 1
xn+1 =

1

n+ 1

n∑
k=1

xk +
1

n+ 1
xn+1 =

1

n+ 1

n+1∑
k=1

xk,

and this proves the recursive relation for µ̂n+1.

We will prove that the recursive equation for Cn+1 is correct by deriving it from
the definition. This is a somewhat tedious computation, and the strategy involves
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writing Cn+1 as a function of known quantities, i.e. Cn, µ̂n, µ̂n+1 and xn+1. We
begin by writing the definition of Cn+1, which is

Cn+1 =
1

n

n+1∑
k=1

(xk − µ̂n+1) (xk − µ̂n+1)T .

We then subtract and add µ̂n to write the outer product as

((xk − µ̂n)− (µ̂n+1 − µ̂n)) ((xk − µ̂n)− (µ̂n+1 − µ̂n))T . (2)

The last term in each factor above may be written as

µ̂n+1 − µ̂n =
1

n+ 1
(xn+1 − µ̂n) .

Equation (2) has the same functional form as

(a− b)(a− b)T = aaT − abT − baT + bbT ,

and we expand it as such to obtain the sum

Cn+1 =
1

n

n+1∑
k=1

(xk − µ̂n) (xk − µ̂n)T + (xk − µ̂n)
1

n+ 1
(xn+1 − µ̂n)T

+
1

n+ 1
(xn+1 − µ̂n) (xk − µ̂n) +

1

n+ 1
(xn+1 − µ̂n)

1

n+ 1
(xn+1 − µ̂n)T .

(3)

We will study each of the four preceding terms in order.

The first term in Equation (3) may be written as

1

n

n+1∑
k=1

(xk − µ̂n) (xk − µ̂n)T =
n− 1

n
Cn +

1

n
(xn+1 − µn) (xn+1 − µn)T ,

where we stripped out the last term in the sum and used the definition of Cn.

The second term in Equation (3) may be written as

1

n(n+ 1)

[
n+1∑
k=1

(xk − µ̂n)

]
(xn+1 − µ̂n)T =

1

n(n+ 1)
(xn+1 − µ̂n) (xn+1 − µ̂n)T ,

since
∑n+1

k=1 (xk − µ̂n) = (
∑n

k=1 xk) + xn+1 − (n+ 1)µ̂n = nµ̂n + xn+1 − nµ̂n − µ̂n.

The third term in Equation (3) may also be written as

1

n(n+ 1)
(xn+1 − µ̂n) (xn+1 − µ̂n)T ,

where we used the same logic as in the computations related to the second term.
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The fourth term in Equation (3) may be written as

1

n(n+ 1)
(xn+1 − µ̂n) (xn+1 − µ̂n)T ,

since the entire term is constant with respect to the index k. We multiplied the last
term with n+ 1 to get it out of the sum, canceled part of the fraction, and applied
the n−1 fraction from outside the sum.

Let’s return Equation (3) again, and write wk = (xn+1 − µ̂n) to ease notation.
Using our findings from above, the sum becomes

Cn+1 =
n− 1

n
Cn +

1

n
wwT − 1

n(n+ 1)
wwT

− 1

n(n+ 1)
wwT +

1

n(n+ 1)
wwT ,

and since 1/n− 1/(n(n+ 1)) = 1/(n+ 1) we obtain the desired result

Cn+1 =
n− 1

n
Cn +

1

n+ 1
wwT .

This concludes our derivation of the recursive formulas.

c) The calculation of µ̂n+1 is dominated by vector addition and subtraction, and the
complexity is O(d). The calculation of Cn+1 is dominated by an outer product,
which has O(d2) complexity, and a matrix addition, which is O(d2) too. The overall
complexity is for the iterative sample covariance matrix Cn+1 is therefore O(d2).

d) When data arrives in a stream (on-line learning), the recursive methods are clearly
superior to application of the naive formulas. Consider data iteratively entering a
learning system. If we compute µ̂1, µ̂2, . . . , µ̂n naively, the overall complexity is

1d+ 2d+ · · ·+ nd = (1 + 2 + · · ·+ n) d = O(n2d).

If we compute the sequence using the recursive equation, the complexity resolves to

1d+ 1d+ · · ·+ 1d = (1 + 1 + · · ·+ 1) d = O(nd).

Using the same logic, naive computation of C1,C2, . . . ,Cn will have complexity
O(n2d2), while using the recursive formula result in O(nd2) complexity.

If data arrives sequentially and predictions are to be made before all of the data
has arrived, then the recursive formulas are superior. They also require less inter-
mediate storage. It would be interesting to examine the numerical stability of both
approaches.
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Problem 3.36

a) We’ll prove the Sherman-Morrison-Woodbury matrix identity by demonstrating
that it reduces to I = I. Recall that 1 + yTA−1x is a scalar. The algebra is(

A+ xyT
)−1

= A−1 − A
−1xyTA−1

1 + yTA−1x(
A+ xyT

) (
A+ xyT

)−1
=
(
A+ xyT

)
A−1 −

(
A+ xyT

) A−1xyTA−1

1 + yTA−1x

I = I + xyTA−1 − xy
TA−1 + xyTA−1xyTA−1

1 + yTA−1x

I = I + xyTA−1 −
x
(
1 + yTA−1x

)
yTA−1

1 + yTA−1x

I = I + xyTA−1 − xyTA−1.

b) Recall the recursive equation for the sample covariance matrix, where we define a,
b and w to ease notation in the following derivation.

Cn+1 =
n− 1

n︸ ︷︷ ︸
a

Cn +
1

n+ 1︸ ︷︷ ︸
b

(xn+1 − µ̂n)︸ ︷︷ ︸
w

(xn+1 − µ̂n)T︸ ︷︷ ︸
wT

= aCn + bwwT

The inverse is given by

C−1
n+1 =

(
aCn + bwwT

)−1
,

and we now apply the Sherman-Morrison-Woodbury matrix identity to obtain

C−1
n+1 =

(
aCn + bwwT

)−1
= (aCn)−1 − (aCn)−1 bwwT (aCn)−1

1 +wT (aCn)−1 bw

=
1

a

(
C−1
n −

b

a

(
C−1
n ww

TC−1
n

1 + b
a
wTC−1

n w

))

=
1

a

(
C−1
n −

C−1
n ww

TC−1
n

a
b

+wTC−1
n w

)
.

Substituting back the relations a−1 = n/(n − 1) and a/b = (n2 − 1)/n, we have
shown that the inverse of Cn+1 is indeed given by

C−1
n+1 =

n

n− 1

(
C−1
n −

C−1
n ww

TC−1
n

n2−1
n

+wTC−1
n w

)
.

c) The computational complexity is O(d2). First w is computed using O(d) flops. In
the numerator, the matrix-vector product x = C−1

n w is computed in O(d2) time,
and so is yT = wTC−1

n . Then the outer product xyT = (C−1
n w)

(
wTC−1

n

)
may be

computed in O(d2) time too.

The denominator is also computed in O(d2) time, and so is the matrix subtraction.
Therefore the overall computational complexity is O(d2). Notice that if wwT is
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computed first in the denominator, the computational complexity would be O(d3),
since matrix-matrix products are O(d3), and must be avoided if possible.

d) See the answer to Problem 35 d) given above.

Problem 3.38

a) The criterion function is given by

J1(w) =
(µ1 − µ2)2

σ2
1 + σ2

2

=
wTSBw

wT (Σ1 + Σ2)w
,

since the numerator is given by

(µ1 − µ2)2 =
(
wTµ1 −wTµ2

) (
wTµ1 −wTµ2

)T
= wT (µ1 − µ2) (µ1 − µ2)T w = wTSBw

and the denominator is given by

σ2
1 + σ2

1 = wT (Σ1 + Σ2)w.

Now we compare this with Equation (96) in Chapter 3 in the book. By the same
logic used there, the solution is given by Equation (106) from the book, which is

w = (Σ1 + Σ2)−1 (µ1 − µ2) =
(
Σ−1

1 + Σ−1
2

)
(µ1 − µ2) .

b) Simply substitute σ2
i → P (ωi)σ

2
i into problem a).

c) Recall that s̃2
i =

∑
y∈Yi(yi − m̃i)

2. This expression is ni times the population

variance, so s̃2
i ≈ niσ

2
i . Equation (96) in the book therefore has n1σ

2
1 + n2σ

2
2 in the

denominator, J1(w) from subproblem a) had σ2
1 + σ2

2 in the denominator and the
denominator of J2(w) is

P (ω1)σ2
1 + P (ω2)σ2

2 =
n1

n
σ2

1 +
n2

n
σ2

2 =
1

n

(
n1σ

2
1 + n2σ

2
2

)
.

The denominator in Equation (96) in the book is proportional to J2(w), so they are
the most similar. Their optimization results in the same value of w, since constants
make no difference when optimizing J(w).

Problem 3.39

a) We start by expanding terms

J1 =
1

n1n2

∑
i

∑
j

(
y2
i − 2yiyj + y2

j

)
=

1

n1n2

(
n2

∑
i

y2
i − 2

(∑
i

yi

)(∑
j

yj

)
+ n1

∑
j

y2
j

)
.
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From var(Y ) = E(Y 2)− E(Y )2 we note that

∑
i

y2
i =

∑
i

(yi −mi)
2 +

1

ni

(∑
i

yi

)2

= s2
1 +

1

ni

(∑
i

yi

)2

.

Now we denote ki =
∑

i yi and kj =
∑

j yj, then we substitute the equation above
into the equation for J1 to obtain

J1 =
1

n1n2

[
n2

(
s2

1 +
1

n1

k2
i

)
− 2kikj + n1

(
s2

2 +
1

n2

k2
j

)]
=
s2

1

n1

+
s2

2

n2

+
k2
i

n2
1

− 2
kikj
n1n2

+
k2
j

n2
2

=
s2

1

n1

+
s2

2

n2

+m2
1 − 2m1m2 +m2

2 =
s2

1

n1

+
s2

2

n2

+ (m1 −m2)2.

b) Not sure about this one. Skipped.

c) Not sure about this one. Skipped.

Problem 3.40

a) We have S̃W = W TSWW , using the fact that W contains eigenvector columns
with eTi SWe

T
j = δij, we observe that

W TSWW =

e
T
1
...
eTn

(SWe1 . . . SWen
)

=

e
T
1
...
eTn

SW (e1 . . . en
)

=

e
T
1SWe1 eT1SWe2 . . .

eT2SWe1 eT2SWe2
...

... . . . eTnSWen

 = δij = I.

The same exact procedure may be applied to S̃B to show that it’s a diagonal matrix
with eigenvalues, Λ. We will not devote space to this computation.

b) Applying the result from subproblem a), we see that the value of J is

J =

∣∣∣S̃B∣∣∣∣∣∣S̃W ∣∣∣ =

∣∣W TSBW
∣∣

|W TSWW |
=
|Λ|
|I|

=
n∏
i=1

λi.

c) The relation is y = W Tx, and the relation after scaling and rotating becomes
y′ = QDW Tx. We replace W T by QDW T and obtain

J ′ =

∣∣∣(QDW T
)
SB
(
QDW T

)T ∣∣∣∣∣∣(QDW T )SW (QDW T )T
∣∣∣ =
|Q| |D| |Λ| |D| |Q−1|
|Q| |D| |I| |D| |Q−1|

=
|Λ|
|I|

= J,

where we used W TSWW = I and W TSBW = Λ, as well as QT = Q−1. Clearly
W T → QDW T leaves J unchanged, so it’s invariant to this transformation.
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2.4 Nonparametrix techniques

Problem 4.2

a) We’ll prove p̄n(x) ∼ N (µ, σ2 + h2
n) by direct computation. An alternative approach

would be to use the Fourier convolution theorem, which states that convolution
becomes pointwise multiplication in the Fourier basis.

We start with

p̄n(x) =

∫
1

hn
φ

(
x− v
hn

)
p(v) dv,

and if φ(x) ∼ N (0, 1) then it is easy to see that 1
hn
φ
(
x−v
hn

)
∼ N (v, h2

n). We’ll

expand the exponents, write it as a quadratic function of v, integrate out the v-
variable and using algebra transform the result into a more well-known form. The
integral is

1√
2πσ

1√
2πhn

∫
exp

[
−1

2

((
x− v
hn

)2

+

(
v − µ
σ

)2
)]

dv, (4)

and we wish to integrate out the v. To do so, we write the exponent as a function
of v. Defining β = x2σ2 + h2

nµ
2, the exponent may be written as

σ2 (x2 − 2xv + v2) + h2
n (v2 − 2vµ+ µ2)

(hnσ)2
=
v2(σ2 + h2

n)− 2v(xσ2 + µh2
n) + β

(hnσ)2
.

Now we introduce y = v
√
σ2 + h2

n, since we are aiming to write the exponent as
(y − a)2/b2 + c for some y. Defining α and completing the square, the right hand
side of the equation above may be written as

y2 − 2v

α︷ ︸︸ ︷(
xσ2 + µh2

n√
σ2 + h2

n

)
+β

(hnσ)2
=
y2 − 2vα + β

(hnσ)2
=

(y − α)2 − α2 + β

(hnσ)2
.

We return to the integral in Equation (4), use dv = (σ2 + h2
n)−1/2dy and write

1√
2πσ

1√
2πhn

1√
σ2 + h2

n

exp

[
−1

2

(
−α2 + β

(hnσ)2

)]∫
exp

[
−1

2

(
y − α
hnσ

)2
]
dy︸ ︷︷ ︸

=
√

2πhnσ

,

where the integral is evaluated easily since it’s merely N (α, h2
nσ

2). We have

p̄n(x) =
1√

2π
√
σ2 + h2

n

exp

[
−1

2

(
β − α2

(hnσ)2

)]
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and all that remains is to now is clean up the exponent. We write

−α2 + β

(hnσ)2
=

1

(hnσ)2

[
(σ2 + h2

n) (x2σ2 + h2
nµ

2)

σ2 + h2
n

− (xσ2 + µh2
n)

2

σ2 + h2
n

]

=
1

σ2 + h2
n

(
x2 + 2µx+ µ2

)
=

(x− µ)2

σ2 + h2
n

,

where some tedious algebra was omitted. Finally the integral becomes

p̄n(x) =
1√

2π
√
σ2 + h2

n

exp

[
−1

2

(x− µ)2

σ2 + h2
n

]
,

which is clearly N (µ, σ2 + h2
n), and this is what we were asked to show.

b) Did not figure this one out. Skipped.

c) Did not figure this one out. Skipped.

Problem 4.3

a) The mean of the Parzen-window estimate is given by

p̄(x) =
1

Vn

∫
p(v)φ

(
x− v
hn

)
dv,

where p(v) = U(0, a). Two observations about when this integral is zero are needed.

(i) p(v) = U(0, a) is zero outside of 0 < v < a.

(ii) φ
(
x−v
hn

)
is zero when x− v > 0⇔ v < x.

Let’s consider the integral in every case.

When x < 0, v must be 0 too since v < x, and the integral is zero.

When 0 < x < a, v can range from 0 to x. We obtain

p̄(x) =
1

Vn

∫
p(v)φ

(
x− v
hn

)
dv =

1

hn

∫ x

0

1

a
exp

(
v − x
hn

)
dv

=
1

ahn
hn exp

(
v − x
hn

)∣∣∣∣v=x

v=0

=
1

a

(
1− exp

(
−x
hn

))
.

When x > a, v is not affected by x and ranges from 0 to a. We obtain

p̄(x) =
1

Vn

∫
p(v)φ

(
x− v
hn

)
dv =

1

hn

∫ a

a

1

a
exp

(
v − x
hn

)
dv

=
1

ahn
hn exp

(
v − x
hn

)∣∣∣∣v=a

v=0

=
1

a

(
exp

(
a− x
hn

)
− exp

(
−x
hn

))
=

1

a

(
exp

(
a

hn

)
− 1

)
exp

(
−x
hn

)
.
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Figure 10: Plot of p̄(x) versus x for a = 1 and h = 1, 1/4 and 1/16.

b) The plot is found in Figure 10.

c) The bias is E(p(x) − p̂(x)) = p(x) − p̄(x), and we obtain the relative bias (in
percentage) by diving with p(x) so that

bias(x) =
|p(x)− p̄(x)|

p(x)
=

1
a
− p̄(x)

1
a

= 1− ap(x) = e−x/hn .

The bias is decreasing on 0 < x < a, so if we want the bias to be less than 0.01 on
99% of the interval, it amounts to requiring that

bias
( a

100

)
= 0.01 ⇔ exp

(
− a

100hn

)
= 0.01.

Solving this equation for hn reveals that hn = a/(100 ln 100).

d) When a = 0, hn becomes hn = 1/(100 ln 100) ≈ 0.0022. See Figure 11 for a plot.
Although it is hard to tell exactly from the plot, observe that when x = 0.01, the
relative bias is indeed close to 0.01 so that p̄(0.01) = 0.99.

0.01 0.00 0.01 0.02 0.03 0.04 0.05
0.0

0.2

0.4

0.6

0.8

1.0

hn = 0.002171
U(0, 1)

Figure 11: Plot accompanying problem 4.3d).
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Problem 4.8

a) We are given that P (ωi) = 1/c and

p(x | ωi) =


1 0 ≤ x ≤ cr

c− 1

1 i ≤ x ≤ i+ 1− cr

c− 1

0 elsewhere

.

It helps to visualize this function. The first line in the function definition above is
for a common, overlapping region of the probability space. The second line defines
a region of the space where each category ωi has a non-overlapping positive area of
the probability density function.

In other words: the value of a random x is in an overlapping part of the proba-
bility space with probability cr

c−1
, and in a non-overlapping part of the space with

probability 1− cr
c−1

. The value of r is between 0 and c−1
c

.

Every point x has a conditional probability p(x | ωi) equal to 0 or 1. To find the
probability of error, we consider regions of the space with overlapping distributions,
denoted o, and non-overlapping regions, in turn. The Bayes error is

P ∗ = P (e) =

∫
P (e | x)p(x) dx

= P (e | o)P (o) + P (e | not o)P (not o)

=
c− 1

c

cr

c− 1
+ 0

(
1− cr

c− 1

)
= r

b) The nearest neighbor error rate is given by Equation (45) in Chapter 4, which is

P =

∫ [
1−

c∑
i=1

P 2 (ωi | x)

]
p(x) dx.

We’ll integrate over the non-zero regions of the probability density. In the non-
overlapping regions, the integral becomes becomes

Pnon-overlapping =

∫ [
1−

c∑
i=1

P 2 (ωi | x)

]
p(x) dx =

∫
[1− 1] p(x) dx = 0.

This makes intuitive sense, this there is no error in non-overlapping regions in the
limit of many data points. In the overlapping regions, we have

Poverlapping =

∫ [
1−

c∑
i=1

1

c2

]
p(x) dx =

∫ cr
c−1

0

[
1− 1

c

]
dx = r = P ∗.

In other words, the Bayes error P ∗ equals the nearest neighbor error P , which both
equal r.
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Problem 4.17

We assume that p(ωi) = 1/c and p(x | ωi) = p(x). In this case, for any point x, any guess
is as good as any other, and the Bayes error rate is clearly

P ∗ =
c− 1

c
.

To prove that the bound

P ≤ P ∗
(

2− c

c− 1
P ∗
)

(5)

is achieved, we calculate the error rate P . In the following calculation, we use the fact
that p(x | ωi) = p(x) and

∫
p(x) dx = 1. We observe that

P =

∫ [
1−

c∑
i=1

P 2 (ωi | x)

]
p(x) dx

=

∫ [
1−

c∑
i=1

(
p(x | ωi)P (ωi)

p(x)

)2
]
p(x) dx

=

∫ [
1−

c∑
i=1

P 2(ωi)

]
p(x) dx

=

[
1−

c∑
i=1

1

c2

]∫
p(x) dx

= 1− c 1

c2
=
c− 1

c
.

In other words, P ∗ and P are equal. When we substitute P ∗ and P into Equation (5), we
see that the bound is achieved since

P ≤ P ∗
(

2− c

c− 1
P ∗
)
⇒ c− 1

c
≤ c− 1

c

(
2− c

c− 1

c− 1

c

)
=
c− 1

c
,

which completes the proof.

Problem 4.27

a) Every property of a metric is easy to prove, except the triangle inequality. I was
unable to prove this.

b) There is a typo in the book, since
(

6
2

)
= 15. The pairings are listed in Table 1 on

page 39.

c) Skipped this one.
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Table 1: Ranked order of combinations of words for problem 4.27.

Word 1 Word 2 DTantimoto

pots stop 0.0
pattern elementary 0.444
pattern pat 0.5
taxonomy elementary 0.5
pat pots 0.6
pat stop 0.6
pattern taxonomy 0.7
pattern pots 0.75
pattern stop 0.75
pat taxonomy 0.75
pat elementary 0.778
pots taxonomy 0.778
stop taxonomy 0.778
pots elementary 0.909
stop elementary 0.909
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2.5 Linear discriminant functions

Problem 5.4

a) We wish to solve the problem

minimize
x

‖x− xa‖2 = xTaxa − 2xTxa + xTx

subject to g(x) = ωTx+ ω0 = 0.

To accomplish this, we start by constructing the Lagrange function

L(x, λ) = xTaxa − 2xTxa + xTx− λ(ωTx+ ω0 − 0),

which we differentiate with respect to x and λ to obtain:

Lx = −2xa + 2x− λω = 0

Lλ = ωTx+ ω0 = 0

We wish to solve these equations for x.

Solving the first equation for x yields x = λω/2 + xa. It remains to solve for λ. If
we left-multiply by ωT and compare with the second equation, we observe that

ωTx = −ω0 and ωTx =
‖ω‖2 λ

2
+ ωTxa.

This implies that

−ω0 =
‖ω‖2 λ

2
+ ωTxa ⇔ λ = − 2

‖ω‖2

(
ω0 + ωTxa

)
,

and substituting this into x = λω/2 + xa yields the optimal answer

x∗ = − ω

‖ω‖2

(
ωTxa + ω0

)
+ xa = − ω

‖ω‖2 g(xa) + xa. (6)

Inserting this into ‖x∗ − xa‖ yields

‖x∗ − xa‖ =

∥∥∥∥ ω

‖ω‖2 g(xa)

∥∥∥∥ =
|g(xa)|
‖ω‖

.

b) The projection onto the plane is the minimizer x∗ from Equation (6) in the previous
sub-problem, so we immediately see that

x∗ = − ω

‖ω‖2

(
ωTxa + ω0

)
+ xa = − ω

‖ω‖2 g(xa) + xa = xa −
g(xa)

‖ω‖2 ω,

which is what we were required to show.
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Problem 5.13

We wish to choose η(k) to minimize the quadratic function

J (a(k + 1)) ' J (a(k))− η(k) ‖∇J‖2 +
1

2
η2(k)∇JTH∇J .

Differentiating and setting the result equal to zero yields

∂J (a(k + 1))

∂η(k)
= −‖∇J‖2 + η(k)∇JTH∇J = 0,

and solving this equation for η(k) yields the desired answer, which is

η(k) =
‖∇J‖2

∇JTH∇J
.

Problem 5.15

a) If α > β2/2γ, then −2αγ + β2 < 0 and

‖a(k + 1)− αâ‖2 ≤ ‖a(k)− αâ‖2 − 2αγ + β2

represents error which decreases at each step. After k corrections we obtain

‖a(k + 1)− αâ‖2 ≤ ‖a(1)− αâ‖2 + k(−2αγ + β2),

and the error is zero when ‖a(1)− αâ‖2 + k0(−2αγ + β2) = 0, which implies that

k0 =
‖a(1)− αâ‖2

2αγ − β2
.

This is what we were asked to show.

b) Skipped. Somehow I did not see this problem when originally solving.

Problem 5.21

To ease the notation, let us write m := m1 −m2
1. Staring with Equation (53) from

Chapter 5 in [Duda et al., 2000], we left-multiply by the bracketed term to isolate w as

w =

[
1

n
SW +

n1n2

n2
mmT

]−1

m. (7)

Recall from Problem 3.36 that the Sherman-Morrison-Woodbury matrix identity is

(
A+ xyT

)−1
= A−1 − A

−1xytA−1

1 + yTA−1x
.

1This definition of m is not the same as the one used in the book, where m is the grand mean.
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We now apply the identity to the bracketed term in Equation (7). In doing so, we identify

A ∼=
1

n
SW and xyT ∼=

n1n2

n2
mmT .

Applying the matrix identity, we obtain

w =

[
nS−1

W −
n2
(
n1n2

n2

)
S−1
W mm

TS−1
W

1 + n
(
n1n2

n2

)
mTS−1

W m

]
m

= nS−1
W m−

n
(
n1n2

n

)
S−1
W mm

TS−1
W m

1 +
(
n1n2

n

)
mTS−1

W m
.

To simplify the notation and remind ourselves that some of these quantities are simply
scalars, let us denote a := n1n2/n and b := mTS−1

W m. We simplify and factor our nS−1
W m

to obtain

w = nS−1
W m−

naS−1
W mb

1 + ab
= nS−1

W m

[
1− ab

1 + ab

]
= nS−1

W m [1 + ab]−1 .

Recalling now that a := n1n2/n and b := mTS−1
W m, we have accomplished the goal. The

result is that
w = nS−1

W mα = nS−1
W m

[
1 +

(n1n2

n

)
︸ ︷︷ ︸

a

mTS−1
W m︸ ︷︷ ︸
b

]−1
,

which shows that α is indeed given by the quantity in the problem statement.

Problem 5.25

a) We supply a proof by induction: we first show the base case, and then the inductive
step.

The base case is verified by checking that the relation holds for η−1(2) = η−1(1) +
y2

1. This is true, since it implies

η(2) =
1

η−1(1) + y2
1

=
η(1)

1 + η(1)y2
1

=
η(1)

1 + η(1)
∑1

i=1 y
2
i

,

which is clearly the given formula for k = 2.

In the inductive step we assume that the relation holds for η(k), and show that
this implies that it holds for η(k + 1) too. The required algebra is

η−1(k + 1) = η−1(k) + y2
k

=

(
η(1)

1 + η(1)
∑k−1

i=1 y
2
i

)−1

+ y2
k

=
1 + η(1)

∑k−1
i=1 y

2
i

η(1)
+
η(1)

η(1)
y2
k

=
1 + η(1)

∑k
i=1 y

2
i

η(1)
.
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Inverting this shows that η(k + 1) = η(1)/
(

1 + η(1)
∑k

i=1 y
2
i

)
, as required.

b) To show why the sequence of coefficients will satisfy the sums, we will first bound
the terms, and the convert the problems to integrals.

If 0 < a ≤ y2
i ≤ b <∞ for every i, then the sum is bounded by

a(k − 1) ≤
k−1∑
i=1

y2
i ≤ b(k − 1),

and this in turn implies the expression η(k) that may be bounded by

η(1)

1 + η(1)b(k − 1)
≤ η(k) ≤ η(1)

1 + η(1)a(k − 1)
.

To show that
∑
η(k) → ∞, we note that

∑
η(k) ' limα→∞

∫ x=α

x=1
η(x) dx. We

observe that the integral

lim
α→∞

∫ x=α

x=1

η(1)

1 + η(1)(x− 1)b
dx = lim

α→∞

1

b
ln |u|

∣∣∣∣u=1+η(1)(α−1)b

u=1

diverges for any value of b, where we used the substitution u = 1 + η(1)(x − 1)b.
Since b represents the maximal value of the terms η(k), any other value of y2

i will
diverge too, and the sum

∑
η(k) diverges to infinity.

To show that
∑
η2(k) → L < ∞, we again use

∑
η2(k) ' limα→∞

∫ x=α

x=1
η2(x) dx.

Now the integral converges, since for any value of a the integral

lim
α→∞

∫ x=α

x=1

η2(1)

(1 + η(1)(x− 1)b)2
dx = lim

α→∞

η(1)

bu

∣∣∣∣u=1

u=1+η(1)(α−1)a

≤ η(1)

b

converges, and a represents the maximal bound on η(k). The sum
∑
η(k) diverges

to infinity, for any 0 < a ≤ y2
i ≤ b <∞.

Problem 5.27

a) The data points are plotted in Figure 12 on page 44, and as seen in the plot they
are not linearly separable.

b) From Equation (95) we observe that the optimal choice of η is given by

η(k) =

∥∥Y T |e(k)|
∥∥2

‖Y Y T |e(k)|‖2 =
eTY Y Te

eTY Y TY Y Te
.

This value varies from loop to loop, depending on e. For this specific data set, the value
of Y and Y Y T are given in equation (b)).
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Figure 12: Graf accompanying problem 5.27.

Y =


1.0 1.0 2.0
1.0 2.0 −4.0
1.0 −3.0 −1.0
−1.0 −2.0 −4.0
−1.0 1.0 5.0
−1.0 −5.0 0.0



Y Y T =


6.0 −5.0 −4.0 −11.0 10.0 −6.0
−5.0 21.0 −1.0 11.0 −19.0 −11.0
−4.0 −1.0 11.0 9.0 −9.0 14.0
−11.0 11.0 9.0 21.0 −21.0 11.0
10.0 −19.0 −9.0 −21.0 27.0 −4.0
−6.0 −11.0 14.0 11.0 −4.0 26.0



3 2 1 0 1 2 3
3

2

1

0

1

2

3

1
2

Figure 13: Convergence of the Ho Kashyap algorithm.

Problem 5.29

To show that there always exists a mapping to a higher dimensional space which leaves
points from two classes linearly separable, we will explicitly provide such a mapping. The
mapping would be very inefficient in practice, but provides a constructive proof.
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Figure 14: Using a kernel to raise points in a new dimension. Source: https://commons.
wikimedia.org/wiki/File:Kernel_trick_idea.svg

Observe first that to apply a linear classifier to points where data from one class is close
to the origin, a function such as y = φ(x) = exp(−xTx) may be used. This leaves the
data linearly separable in the new space, as illustrated in Figure 14. Below we will extend
this idea by introducing many distinct mappings φ(x).

Consider now points D = {x1,x2, . . . ,xN} in Rd. Assume that some points S ⊆ D belong
to ω1, and that we know exactly which points. If we know which points belong to ω1,
then a kernel density estimate (Parzen window) such as

y = Parzen(S) =
1

|S|
∑
xi∈S

1

h
φ

(
x− xi
h

)
with a sufficiently small value of the bandwidth h will raise these points in the new y
feature space. When h� 1, neighboring points not belonging to ω1 will be unaffected. A
plane such as y = 0.1 will then perfectly separate the points.

Since we do not know the true subset S ⊆ D, we can apply this transformation on every
possible subset of D (the power set of D). There are 2|S| such subsets. We use

y =
(
x Parzen(S1) Parzen(S1) . . . Parzen(S2|S|)

)
to map x ∈ Rd to a d+ 2|S| space. In other words: if {x1} is “raised” in one new feature
dimension, {x1,x2} in another, {x1,x3} in yet another, etc. for every combination of
points, then in some dimension in the feature space the points are linearly separable.

Problem 5.32

a) The plot is show in Figure 15. By inspection the weight vector is

a = (a0, a1, a2) = (−1.5, 1, 1).

This corresponds to the line y = 1.5− x. The optimal margin is the distance from
the line y = 1.5− x to a point, say (1, 1), and this distance is

√
2/4 ≈ 0.3536.
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Figure 15: Plot related to problem 5.32a).

b) From inspection there are four support vectors, and they are

(0, 1)T (1, 0)T

(1, 1)T (2, 0)T .

c) This laborious computation is omitted.

Problem 5.33

a) The optimization problem

L(a,α) =
1

2
‖a‖2 −

n∑
k=1

αk
[
zka

Tyk − 1
]

(8)

has a solution which is a saddle point, since we wish to maximize with respect to
α and minimize with respect to a.

b) Here I believe there to be a slight error in the text, which might lead to confusion.
In the initial pages of the chapter, the distance from a point to a hyperplane is given
by r = (ωTx+ ω0)/ ‖ω‖, and this is indeed correct.

In the context of SVMs, however, the distance is said to be

g(y)

‖a‖
=
aTy

‖a‖
=

(ω0,a
′)(1,y′)T

‖a‖
=
a′ Ty + ω0

‖a‖
,

which is different because a is in the denominator, not a′. Amending Equation
(8) with this information, the 1

2
‖a‖2 should be replaced by 1

2
‖a′‖2, i.e. dropping

a0 = ω0. If we do this and differentiate with respect to the first component of a,
we obtain

∂L(a,α)

∂a0

=
∑
k

α∗kzky0 = 0,

which gives the desired result since y0 = 1 due to the augmentation of the vector.
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c) To prove this, we differentiate with respect to a and obtain

∂L(a,α)

∂a
= a∗ −

∑
k

α∗kzkyk = 0.

d) If the Lagrange multiplier (or undetermined multiplier) α∗k is zero, then it’s said to
be inactive. At the optimum, the constraint is not used. The optimum of L(a,α)
is then the same with or without this constraint.

If the Lagrange multiplier α∗k is non-zero, then the constraint is said to be active. The
constrained solution is different from the unconstrained solution, and the optimum
lies on the boundary of the constraint. Since α∗kzkyk ≥ 1 in the feasible region, the
optimal solution is on the boundary if α∗kzkyk = 1, but then α∗k is non-zero since
the constraint is active.

In conclusion, either α∗kzkyk = 1 if the constraint is active, or α∗k = 0 if the constraint
is inactive. This is one of the Karush–Kuhn–Tucker (KKT) conditions, and it may
be expressed as

α∗k [α∗kzkyk − 1] = 0 k = 1, . . . , n.

e) We simply multiply the brackets in Equation (8) from subproblem a).

L(a,α) =
1

2
‖a‖2 −

n∑
k=1

αk
[
zka

Tyk − 1
]

=
1

2
‖a‖2 −

n∑
k=1

αkzka
Tyk +

n∑
k=1

αk

f) Using a∗ =
∑

j α
∗
jzjyj we observe that

L(α) =
1

2
‖a∗‖2 −

n∑
k=1

αkzka
∗Tyk +

n∑
k=1

αk

=
1

2

(∑
j

α∗jzjy
T
j

)(∑
k

α∗kzkyk

)
−

n∑
k=1

αkzk

(∑
j

α∗jzjy
T
j

)
yk +

n∑
k=1

αk

and since the first and second terms are equal, we obtain

−1

2

(∑
j

α∗jzjy
T
j

)(∑
k

α∗kzkyk

)
+

n∑
k=1

αk = −1

2

∑
j

∑
k

α∗jα
∗
kzjzky

T
j yk +

n∑
k=1

αk

as desired. We have formulated the problem as a maximization over L(α).
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2.6 Multilayer Neural Networks

Problem 6.5

The backpropagation rule for input-to-hidden weights is given by Equation (21), which is

∆wji = ηδjxi = η

[
c∑

k=1

wkjδk

]
f ′(netj)xi.

Notice that if zk = tk for every value of k, there is nothing to learn since the error is zero.
In this case, δk = 0 and as a result ∆wji = 0. The learning rate is proportional to the
error (tk− zk), but it’s also weighted by wkj. The higher this weight is, the more an error
contributes and the further it is adjusted in the backpropagation rule.

Problem 6.8

a) In this problem it helps to make a drawing, or study Figures 6.4 and 6.2 in the
book.

(i) The bias is connected to nH + c weights.

(ii) Every one of the d inputs is connected to every one of the nH hidden units, for
a total of dnH weights.

(iii) Every hidden unit nH is connected to every one of the c outputs, for nHc
weights.

The total number of weights is therefore given by

nH + c+ dnH + nHc = nH(1 + d+ c) + c.

b) Consider the equation

zk = f

[
nH∑
j=1

wkj f

(
d∑
i=1

wjixi + wj0

)
+ wk0

]
for a neural network output. If the sign is flipped on every weight going into a
hidden unit, and the weights leading out from that same unit are also flipped, then
the net result is no change if the activation function obeys f(−x) = −f(x). In other
words, if the wji 7→ −wji and wj0 7→ −wj0 in the equation above, then

f

(
d∑
i=1

−wjixi − wj0

)
= −f

(
d∑
i=1

wjixi + wj0

)
and a mapping wkj 7→ −wkj in the outer sum will cancel the sign flip. Note that
this result only applies to odd functions where f(−x) = −f(x).

c) If there are nH hidden units, there are nH ! ways to permute them. For each of
these permutations, every associated weight might have it’s sign flipped or not, for
a total of 2nH possibilities with respect to sign flipping. The total count is therefore
nH !2nH exchange symmetries (not nH2nH as [Duda et al., 2000] claims). This result
is verified in [Bishop, 2011] on page 232, so we assume that [Duda et al., 2000]
contains a typo here and the “!” sign was forgotten.
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Problem 6.10

a) The rules of differentiation in calculus shows that when f(x) = 1/(1 + eax), then
the derivative may be expressed in terms of the function as

f ′(x) = −aeaxf 2(x).

b) We’ll study f(x) = a(1−e−2bx)/(1+e−2bx), and it pays off to ease notation somewhat.
Letting g(x) := e−2bx, we have g′(x) = −2bg(x) and we expedite notation by writing

f(x) = a
1− e−2bx

1 + e−2bx
:= a

1− g(x)

1 + g(x)
= a(1− g(x))(1 + g(x))−1.

Differentiating this and using the chain rule and product rule of calculus, we obtain

f ′(x) =
−ag′(x)(1 + g(x))− ag′(x)(1− g(x))

(1 + g(x))2

=
4abg(x)

(1 + g(x))2
= a

1− g(x)

1 + g(x)︸ ︷︷ ︸
f ′(x)

4bg(x)

(1− g(x))(1 + g(x))
.

Substituting back g(x) := e−2bx, we see that the derivative may be expressed in
terms of the function as

f ′(x) = f(x)
4be−2bx

1− e−4bx
.

Problem 6.16

a) Without loss of generality we assume that J(w) = 1
2
wTHw, since by a transforma-

tion of the type w = w′ − c we could transform a general, non-centered quadratic
equation to this form. This is analogous to scaling f(x) = ax2 + bx+ x in order to
formulate it as f(x′) = a′x′2.

To study convergence, we examine the learning rule, which may be written as

wn+1 = wn − η∇J(wn)

= wn − ηHwn

= (I − ηH)wn,

and observe that wn = (I − ηH)nw0. Convergence is ensured if (I − ηH)n goes
to zero as n→∞. Informally, repeated application of the matrix should bring the
vector to zero. The convergence of repeated application of a matrix to a vector is
controlled by eigenvectors and eigenvalues.

We write (I − ηH) = QΛQT to express the symmetric, positive definite matrix in
it’s eigenvalue decomposition. Then we define w′k = Qwk =

∑d
i=1 αivi to express

wk in the eigenvalue basis of H , where the vis are the orthonormal eigenvectors.
This transformation is a rotation of the space, since Q is orthonormal.
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The expression on the left below is for the vector, and the expression on the right
captures the behavior of a single eigenvector component vi.(

d∑
i=1

αivi

)
n+1

= QΛ

(
d∑
i=1

αivi

)
n

⇔ (αivi)n+1 = Qλi(αivi)n+1

The matrix Q is orthogonal, so it merely rotates or reflects a vector, but ‖vi‖ =
‖Qvi‖ so the magnitude is unchanged. Therefore we ignore it when considering
convergence, and see that learning is ensured if |λi| < 1 for every i = 1, 2, . . . , d.
Since every eigenvalue is positive, the maximal eigenvalue controls convergence.

The only thing left to do is to relate the eigenvalues of (I − ηH) to the eigenvalues
of H . If a matrix is multiplied by a scalar, then so are it’s eigenvalues. The effect of
subtraction by the identity matrix is not as obvious, but if we write out the equation
for the characteristic polynomials we observe that

eig. vals of (I − ηH) ⇔ zeros of det (I − ηH − λI) = det (I(1− λ)− ηH)

eig. vals of ηH ⇔ zeros of det (Iλ′ − ηH) ,

and comparing we observe that λ′ = λ− 1. We’re really after the eigenvalues of H ,
which we’ll now denote by λH = λ′/η. From this, we have convergence if

−1 <λmax < 1

−1 <1− ηλHmax < 1

ηλHmax < 2,

which is the same as requiring that η < λHmax/2.

b) The best learning rate is achieved if we manage to choose η such that the maximal
eigenvalue (in absolute value) of (I − ηH) is close to zero. The optimal rate is
given by2

rate(η) = max
i
|1− ηλi| = max (|1− ηλ1| , |1− ηλd|)

where λ1 is the smallest eigenvalue ofH and λd is the largest. Convergence is fastest
when these arguments are equal in absolute value, so we require that

(1− ηλ1) = −(1− ηλd)

and solve for η to obtain η∗ = 2/(λ1 + λd). The optimal learning rate is obtained
by substituting this η∗ into the function rate(·). We consider the positive value
(1− η∗λ1), which becomes

rate(η∗) = (1− η∗λ1) =
λd − λ1

λd + λ1

=
λd/λ1 − 1

λd/λ1 + 1
,

and recognize that the learning rate is indeed dependent on the ratio of the largest
to the smallest eigenvalue of H .

2See https://distill.pub/2017/momentum/ for details.
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c) An informal argument is as follows: Consider unstandardized data which is not
highly correlated (i.e. the covariance matrix is nearly diagonal), but where data is
from different dimensions and is on vastly different scales (i.e. the diagonal of the
covariance matrix has entries on different scales). Assume that this data is used
to train a neural network, and that the weights are initialized to sensible, small,
random values. Changing one weight value w1 might then potentially change the
error drastically compared to changing another weight w2, and J(w) ≈ 1

2
wTHw

will have diagonals on vastly different scales. The eigenvalues are λ1 ≈ min diagH
and λd ≈ max diagH , so learning will be slow since rate(η∗) will be close to 1.

Standardizing alleviates these problems. The data is on the same scale, so the
diagonals entries of H will likely be on the same scale and learning will be faster.

d) Standardizing the data by subtracting means and diving by standard deviations in
every dimension individually transforms the data to the same scale. The data might
still be highly correlated. The whitening transform consists of scaling and rotating
the data. The rotation diagonalizes the covariance matrix, and the scaling makes
the spectrum of eigenvalues uniform, so that the variances are all unity.

Problem 6.21

a) The softmax function is given by Equation (30) in Chapter 6 in the book, which is

zk = f(netk) =
enetk∑c
m=1 e

netm
∝ enetk .

The learning rule when the sum squared error function is used becomes dependent
on ∂J

∂netk
and ∂netk

∂wkj
, see Equation (13) in the book. The only change is that now

f(netk) is not a sigmoid, but the softmax function. To ease notation, we define
k := netk, and differentiate.

∂f(k)

∂k
= ek

[
c∑

m=1

em

]−1

− ek
[

c∑
m=1

em

]−2

ek =

ek
[∑c

m=1
m 6=k

em
]

[
∑c

m=1 e
m]

2

The update rules becomes a simple modification of Equation (17) from the book:

∆wkj = ηδkyj = η(tk − zk)
enetk

[∑c
m=1
m 6=k

enetm

]
[
∑c

m=1 e
netm ]

2 yj.

Extending the result to ∆wji is straightforward, since ∆wji a function of δk above.

b) When employing cross entropy, the learning rule is identical to the sum squared
error above, save for ∂J

∂zk
, which now becomes

∂J(w)

∂zk
=

∂

∂zk

[
c∑

k=1

tk ln
tk
zk

]
= tk

zk
tk

∂

∂zk

(
tkz
−1
k

)
= − tk

zk
.

Everything else is exactly equal to the solution to sub-problem a) above.
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Problem 6.24

We compare Equation (7) for the 3-layer neural network with Equation (32) for general
additive models (GAM). The equations are, respectively, given by

zk = f

[
nH∑
j=1

wkj f

(
d∑
i=1

wjixi + wj0

)
+ wk0

]
and

z = f

[
d∑
j=1

wkjfi (xi) + wk0

]
.

The functions fi(xi) in GAM may in general be multivariate. According to Wikipedia
“The GAM model class is quite broad, given that smooth function is a rather broad
category. For example, a covariate xi may be multivariate and the corresponding fi a
smooth function of several variables, or fi might be the function mapping the level of a
factor to the value of a random effect.”

Comparing the equations, we observe that

d∑
j=1

wkjfi (xi) ∼=
nH∑
j=1

wkj f

(
d∑
i=1

wjixi + wj0

)
.

In the typical case, the f on the right hand side a sigmoid function. The right hand side
is a weighted sum of sigmoids, where the input to the sigmoids are again a linear function
of the neural network inputs. The number of terms in the sum has no significance in the
left-hand sum, since a function fi(x) could be defined as f1(x) + f2(x). The Kolmogorov-
Arnold representation theorem guarantees that both of these constructions can, in theory,
approximate any continuous function.

Problem 6.39

a) If we write out the sums, we obtain

f(x) = xTKx =
∑
i

∑
j

xiKijxj.

Of course, the function f(·) above is a mapping from a vector x ∈ Rd to a real
number R. In this setting, the derivative is the gradient, i.e. ∇f(x) = f ′(x). To
find the gradient using explicit components, we write out the sums as

d

dxk

(
xTKx

)
=

d

dxk

(∑
i

xi
∑
j

Kijxj

)
=

d

dxk

(
x1

(∑
j

K1jxj

)
+ x2

(∑
j

K2jxj

)
+ · · ·+ xk

(∑
j

Kkjxj

)
+ . . .

)
. (9)
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For every term i 6= k , the derivative is xiKik since every other term in the sums
vanish. On the k’th term, we apply the product rule of differentiation to obtain

d

dxk

(
xk

(∑
j

Kkjxj

))
=
∑
j

Kkjxj + xk (Kkk) .

Applying these results to the non-k’th terms and the k’th term respectively, Equa-
tion (9) may be written in a more readable form as

d

dxk

(
xTKx

)
= x1K1k + x2K2k + x3K3k + · · ·+

(∑
j

Kkjxj + xkKkk

)
+ . . .

=
∑
i

xiKik +
∑
j

Kkjxj = KTx+Kx =
(
KT +K

)
x,

where the last equality follows from

b = Ax ⇔ bi =
∑
j

Aijxj

b = ATx ⇔ bi =
∑
j

Ajixj.

b) Here’s an approach which does not require the use of indices, and is therefore more
expedient. Let f(x) = xTHx, where H is symmetric. We have

f(x+ δx)− f(x) = (δx)T Hx+ xTH (δx) +O
(
‖δx‖2) ,

and when H is symmetric this becomes

f(x+ δx)− f(x) = 2 (δx)HxT +O
(
‖δx‖2) .

Observe that 2Hx is the first-order approximation to f(x+ δx), i.e. the derivative.

Problem 6.42

The weight decay rule of Equation (38) in the book does not exactly lead to Equation
(39). The rule multiplies the weight found by gradient descent by the factor 1 − ε, such
that

wn+1 = (wn − η∇J(wn)) (1− ε).
After some algebra, we observe that this is equivalent to

wn+1 = wn − η
(

(1− ε)∇J(wn) +
ε

η
wn

)
︸ ︷︷ ︸

∇Jef (wn)

.

Since ∇wTw = 2w, we see that

Jef (wn) = (1− ε)J(wn) + ε
1

2η
wT
nwn.
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This is a weighted average of the ordinary error function J(wn) and the regularization
term 1

2η
wT
nwn, weighted by (1− ε) and ε respectively. We can easily verify that

i) When ε = 0, everything reduces to gradient descent with no weight decay.

ii) When ε = 1, the weight vector wn+1 is forever stuck at 0.

This also shows that Equation (39) in the book is wrong with respect to Equation (38),
since if ε = 1 in the book, Equation (38) would always set wn+1 = 0, while optimizing
Equation (39) would not—it would amount to optimizing J(w) with a regularization
term.
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2.7 Stochastic methods

Problem 7.4

Every magnet can be turned up or down, so there are 2N possible configurations. However,
flipping the sign of a state vector s does not alter E. For instance s = (1, 1,−1) results
in the same energy as s = (−1,−1, 1). Therefore, only half of the 2N states correspond
to (possibly) unique energy levels, i.e. 2N−1 unique energy levels.

The total time required for exhaustive search will therefore be T (N) = 2N−1 ·10−8 seconds.
Searching the space for N = 100 units would take 6.338·1021 seconds. Searching the space
for N = 1000 units would take 5.357 · 10292 seconds. Both of these numbers are huge.
Searching the space would take millions and millions of years.

Problem 7.5

a) The formula is E ∝
∑n

i=1

∑n
j=1 wijsisj, which is naively computed using n2 flops.

Since we have symmetry and wij = wji, we can write the sum as
∑n

i=1

∑n
j=i+1wijsisj.

The number of flops is then

(n− 1) + (n− 2) + · · ·+ 2 + 1 =
n(n− 1)

2
.

Furthermore, there are 2n−1 possibly unique energy energy levels. So the total time
is given by

T (n) = 2n−2n(n− 1) · 10−10.

b) See figure 16 for a plot.
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Figure 16: Solution to problem 7.5b).

c) To find the value of n which may be computed in a day, we find n such that

T (n) = 3600 · 24 or, alternatively lnT (n) = ln(3600 · 24).
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Working in log-space avoids numerical overflow, since T (n) grows very large very
quickly. The answers are:

A day: lnT (n) = ln(3600 · 24) ⇒ n = 40

A year: lnT (n) = ln(3600 · 24 · 365) ⇒ n = 48

A century: lnT (n) = ln(3600 · 24 · 365 · 100) ⇒ n = 55

Problem 7.6

We wish to show that at high temperature, every configuration is equally likely. The
probability that a system is in a configuration of energy Eγ is given by Equation (3) in
chapter 7 the book, i.e. P (γ) ∝ exp(−Eγ/T ). As T goes to infinity, we have

lim
T→∞

P (γ) = lim
T→∞

(
e−1/T

)Eγ
= 1Eγ = 1,

and so the probability of every state γ is equally likely. The normalization constant Z(T )
makes it a true probability function, i.e. ensures that it sums to unity.

Computer exercise 7.2

A simple implementation of Algorithm 1 in from Chapter 7 is found in the Python file
simulated_annealing.py. The answers to sub-problem a) and b) are shown in Figures
17 and 18 respectively. A plot showing the average reduction in energy over 500 runs in
show in Figure 19, and it’s interesting to see that the average reduction appears to be
exponential.
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Figure 17: Simulated annealing with T (1) = 10 and c = 0.9. A total of 20 main iterations
(with fixed temperature), and 5n sub iterations (with the same temperature) gives 100n =
600 iterations.
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Figure 18: Simulated annealing with T (1) = 5 and c = 0.5. A total of 20 main iterations
(with fixed temperature), and 5n sub iterations (with the same temperature) gives 100n =
600 iterations.
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Figure 19: Simulated annealing over 500 runs with T (1) = 10 and c = 0.9. A total
of 20 main iterations (with fixed temperature), and 5n sub iterations (with the same
temperature) gives 100n = 600 iterations.
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2.8 Nonmetric methods

Problem 8.10

a) One of the defining properties of an impurity function is that it should be zero when
only ω1 is present, or when only ω2 is present. For a polynomial to incorporate
this information, it must have two zero points, and therefore it must at least be
quadratic.

b) The simplest quadratic form of P (ω1) obeying the boundary conditions is

i(P (ω1)) ∝ P (ω1) [1− P (ω1)] = P (ω1)P (ω2).

c) Let X be a Bernoulli variable, with X ∈ {0, 1} = {ω2, ω1} = C and P (X = 1) =
P (ω1). In the given problem, we do not know the true probabilities—but they may
be estimated from the fractions. The variance of X is given by

var [X] =
∑
wj∈C

P (ωj) [ωj − µ]2

= P (ω1) [ω1 − µ]2 + P (ω2) [ω2 − µ]2

= P (ω1) [1− µ]2 + (1− P (ω1)) [0− µ]2

= P (ω1) [1− P (ω1)]2 + (1− P (ω1))P (ω1)2

= [1− P (ω1)]
[
P (ω1) (1− P (ω1)) + P (ω1)2

]
= (1− P (ω1))P (ω1).

In other words, sample variance is proportional to the impurity estimate defined in
subproblem b). If the variance is high, the data is impure.

Problem 8.14

We generalize the problem of a single missing attribute in a single training point to several
missing attributes, and to several deficient training points.

In this problem, a pattern x = (x1, x2, . . . , xd) with d attributes can have between 0
and d − 1 missing attributes. Furthermore, the data set D = {x1,x2, . . . ,xn} may have
many training points with missing attributes. The data might look something like what
is presented in Table 2 on page 59.

High level Python-like pseudocode is given below. The principal difference between the
code below and the code for the same problem without missing attributes, is that there
might now be n−mi− 1 possible splits, where mi are the number of data points missing
from attribute i. This is in contrast to the original algorithm, where there are in general
n− 1 possible splits for every attribute i.

for attribute=1 to d do:

attribute_data = data[attribute, :]

num_missing = count_missing(attribute_data)
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best_split = None

maximal_impurity_gain = -inf

for possible_split=1 to (n - 1 - num_missing) do:

impurity_gain = compute_gain(attribute_data, possible_split)

if impurity_gain > maximal_impurity_gain:

best_split = (attribute, possible_split)

maximal_impurity_gain = impurity_gain

split_along_maximal_impurity_gain(best_split)

Problem 8.16

a) The following tree was constructed by hand. Recall that yes is to the left, and no
is to the right. The notation ωij signifies a pattern j from category i.

x2 = 0

{ω12, ω13, ω14} x3 = 0

{ω11, ω21} {ω22, ω23, ω24}

no
yes

no
yes

The leftmost leaf node assigns to ω1 with probability 1, the middle leaf node assigns
to either ω1 or ω2 with probability 0.5, and the rightmost node assigns to ω2 with
probability 1.

b) The resulting tree would be identical to the one given in subproblem a), but the
assignment from the middle node should be ω1 with probability 2/3.

Table 2: Example of what data for problem 8.14 might look like.

x1 x2 . . . xd

0 ∅ . . . 1
∅ ∅ . . . 1
1 ∅ . . . ∅
...

...
...

...
0 ∅ . . . 1

59



Problem 8.18

We will consider every alignment of x and text. For each of these alignments, there will
between 1 and m comparisons before termination, depending on whether matches are
found or not. There is a probability d−1 of a match for each comparison. We will see that
expected number of comparisons may be expressed as a arithmetico-geometric sum, i.e. a
sum of terms which are the product of an arithmetic and geometric sum.

We start out by observing that there are n −m + 1 alignments of x and text. For every
alignment, at most m characters must be compared. Let 1 ≤ ` ≤ m be the number of
comparisons made before the loop terminates. The loop terminates when a comparison
yields no match. Fixing x and considering every character of text to be randomly drawn
from an alphabet A of d characters, there is a probability of d−1 of a match in each
comparison.

Let us now study P (`), the probability of ` comparisons before termination of the loop.
For instance P (`) = 1− 1/d, since it represents the probability of one comparison before
exiting the loop, and this happens if there is no match on the first comparison. More
generally, we observe that

P (` = 1) = 1− 1

d
(no match on the first)

P (` = 2) =

(
1− 1

d

)
1

d
(match, then no match)

P (` = 2) =

(
1− 1

d

)
1

d2
(match, match, then no match)

... =
...

P (` = m) =

(
1− 1

d

)
1

dm−1
+

1

dm
(no match on final, or match on final)

We now take the expected value of ` to obtain the expected number of comparisons, and
introduce a variable r := 1/d for notational convenience.

E [`] =
m∑
k=1

P (` = k) k =

(
1− 1

d

)(
1 +

2

d
+

3

d2
+ · · ·+ m

dm−1

)
+
m

dm

= (1− r)
(
1 + 2r + 3r2 + · · ·+mrm−1

)
+mrm

The sum in the second parenthesis in the first term is a arithmetico-geometric series.
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Using the summation formula3 we obtain

E [`] =
m∑
k=1

P (` = k) k = (1− r)
(
1 + 2r + 3r2 + · · ·+mrm−1

)
+mrm

= (1− r)
(

1− (1−m)rm

1− r
+
r(1− rm)

(1− r)2

)
+mrm

=
(1− r)− (1− r)(1 +m)rm + r(1− rm) + (1− r)mrm

1− r
.

After some algebraic operations on this final fraction, we obtain the desired result

E [`] =
m∑
k=1

P (` = k) k =
1− rm

1− r
=

1− d−m

1− d−1
.

The problem is solved, since the expected number of comparisons is

alignments× comparisons = (n−m+ 1)× 1− d−m

1− d−1
.

The inequality (1− d−m)/(1− d−1) ≤ 2 presented in the problem description stems from
the fact that the fraction is the sum of a geometric series

1− d−m

1− d−1
= 1 +

1

d
+

1

d2
+ · · ·+ 1

dm−1
.

When d = 2 above, the sum equals 2. Clearly, when d > 2 the terms become smaller, and
the sum must therefore be < 2. Therefore, as long as d ≥ 2, the sum is ≤ 2. This proves
the inequality when d ≥ 2, which is a reasonable assumption considering the problem.

Problem 8.22

A naive algorithm which loops through the alphabet (of size d) for every letter in x (of
size m) would give an O(dm) algorithm. This is not very efficient, and faster algorithms
may easily be constructed.

We can construct a better algorithm with runtime O(d+m) as follows.

1. Construct an empty lookup table for every character in the alphabet

2. For every character and position in x, overwrite the lookup table

Below is actual Python code implementing the pseudocode above.

def last_occurence(alphabet, word):

"""

Returns a mapping F[char] -> last occurrence in word.

"""

mapping = {i:-1 for i in alphabet} # This is O(d)

3See Wikipedia for the summation formula of a arithmetico-geometric series.
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for index, char in enumerate(word): # This is O(m)

mapping[char] = index

return mapping

It’s possible to make the algorithm closer to O(min(m, d)), if we know the values of m
and d before the algorithm starts. If d � m or m � d, such an algorithm can avoid
looping over the longest string, but we will not pursue this any further in this problem.

We are now in a position to answer the questions posed in the problem.

a) The time complexity of the algorithm is O(m+ d).

b) The space complexity is O(d) in the algorithm above. We can avoid storing the
empty matches (for instance by using the collections.defaultdict data structure
in Python) and get the storage down to O(unique chars(m)).

c) Running the algorithm above requires d+m operations, so that x = “bonbon” yields
26 + 6 operations. Since m < d here, we can use a collections.defaultdict data
structure in Python and bring it down to m = 6 operations.

Below is a print showing that collections.defaultdict indeed leads to faster runtime
in practice. The collections.defaultdict data structure is a dictionary (hash-table)
which calls a default factory function is a value of a given key is not found.

%timeit last_occurence(alphabet, word)

2.32 microseconds +/- 42 ns per loop

%timeit last_occurence_defaultdict(alphabet, word)

1.17 microseconds +/- 3.17 ns per loop

Problem 8.26

a) The properties of a metric D(a, b) are (i) Non-negativity; (ii) Reflexivity; (iii) Sym-
metry; and (iv) Triangle inequality. These properties are listed on page 187 in
[Duda et al., 2000], which corresponds to Section 4.6.1. In order, we see that

(i) Non-negativity is always obeyed, since every cost is positive.

(ii) Reflexivity is always obeyed, since if a = b no operation is performed and the
total cost of transformation is zero.

(iii) Symmetry is not always obeyed. A counterexample follows.

(iv) The triangle inequality is not always obeyed. A counterexample follows.

b) We provide counterexamples for symmetry and the triangle inequality.

Counterexample for symmetry Let a = dog and b = dogs. Define the distance
D(a, b) as the cost of transforming a to b. Then D(a, b) is the distance of a single
insertion to transform dog 7→ dogs, while D(b,a) is the distance of a single deletion
dogs 7→ dog. If the cost of insertion and deletion differ, then D(a, b) 6= D(b,a).
This provides a counterexample of the symmetry property of a metric when the
costs of operations may be different.
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Counterexample for the triangle inequality Let ε be the empty string. Con-
sider the transformation shown in the diagram below. If the cost of substitution
is much greater than the cost of deletion and insertion, then D(a, ε) + D(ε, b) �
D(a, b). This provides a counterexample of the triangle inequality of a metric.

a b

ε

substitution

deletion insertion

Problem 8.31

a) A grammar generating L(G) = {anb | n ≥ 1} is, for instance, given by

A = {a, b} S = S I = {A}
P = {S → Ab,A→ a,A→ Aa}.

b) Below is a derivation tree showing how ab and aaaaab are generated.

S Ab Aab Aaab Aaaab Aaaaab . . .

ab aab aaab aaaab aaaaab

Problem 8.32

a) Since Type 3 ⊂ Type 2 ⊂ Type 1, we check if it’s a Type 3 (regular) grammar
first. It’s not a regular grammar, since the rule B → aBa is not of the form α→ zβ
or of the form α→ z. It is, however, a Type 2 (context-free) grammar since every
rule is of the form I → γ. In other words, every rewrite rule is from an intermediate
symbol I to a string γ made up of intermediate of terminal symbols.

b) To see that the grammar generates the language L(G) = {cancbanb | n ≥ 1}, we
draw a derivation tree with intermediate states in the first row, and final states in
the second row. The rule B → cb is highlighted in boldface.

S cAb caBab caaBaab caaaBaaab . . .

cacbab caacbaab caaacbaaab

Clearly moving down from caBab produces {cancbanb | n = 1}, and moving ` to
the right from caBab, and then down, produces {cancbanb | n = `+ 1}.

c) See the solution to subproblem b) above for derivation trees.
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2.9 Algorithm-independent machine learning

Problem 9.9

a) The binomial theorem is

(x+ y)n =
n∑
r=0

(
n

r

)
xryn−r = xn + nxn−1y + · · ·+ nxyn−1 + yn,

and when we substitute x = y = 1 the result immediately follows, since

2n = (1 + 1)n =
n∑
r=0

(
n

r

)
1r1n−r =

n∑
r=0

(
n

r

)
.

b) The base case of the inductive argument is straightforward, we have

K(1) =
1∑
r=0

(
1

r

)
=

(
1

0

)
+

(
1

1

)
= 1 + 1 = 2.

To solve the problem of the inductive step, we will need to use following three
observations: (

n

r

)
=

(
n− 1

r

)
+

(
n− 1

r − 1

) (
n

n

)
= 1

(
n

0

)
= 1

The first one might be familiar from the construction of Pascals triangle, and the
final two are easily derived when writing out

(
n
r

)
:= n!/(n− r)!r!.

The strategy is to write out K(n + 1), strip off the first and last term in the sum,
apply the first identity above, and then collect terms to obtain K(n) twice. We
proceed:

K(n+ 1) =
n+1∑
r=0

(
n+ 1

r

)
=

(
n+ 1

0

)
+

n∑
r=1

[(
n+ 1

r

)]
+

(
n+ 1

n+ 1

)
= 1 +

n∑
r=1

[(
n

r

)
+

(
n

r − 1

)]
+ 1

=

[
1 +

n∑
r=1

(
n

r

)]
+

[
n∑
r=1

(
n

r − 1

)
+ 1

]

=
n∑
r=0

(
n

r

)
+

n∑
r=0

(
n

r

)
= K(n) +K(n) = 2K(n)

If K(n + 1) = 2K(n) and K(1) = 2, then K(n) = 2n for all n, which is what we
wanted to prove.
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Problem 9.13

a) The n length string 010110111011110... has the pattern 01-011-0111-01111,
which may be generated using a for-loop. To generate n bits, we need a counter c
keeping track of the number of 1s. For instance, to generate the 2 + 3 + 4 + 5 = 14
bit string 01-011-0111-01111 the counter must go to 4. Similarly, to generate the
2 + 3 + 4 + 5 + 6 = 20 bit string 01-011-0111-01111-011111 the counter must go
to 5.

More generally, to generate n the counter c must go to approximately

1 + 2 + 3 + · · ·+ c = n =
c(c− 1)

2
.

Therefore, we need a counter going to ∼
√
n to generate a n bit string. Storing the

number c requires log2 c bits, so the complexity is O (log2

√
n).

b) We must iterate over ∼ n/2 zeros, then output a 1, then iterate over ∼ n/2 zeros
again. To do this, we need a counter going to n/2, storing this requires log2(n/2)
bits, so the Kolmogorov complexity is O (log2 n).

c) The complexity is O(1), since there exists programs of finite size which will yield
any arbitrarily large number of consecutive digits of e. This is the same reason as
why π is O(1), as explained in Section 9.2.3 in [Duda et al., 2000].

d) Also constant, for the same reason as the previous sub-problem.

e) Assuming a finite size program which generates the digits of π one-by-one exists,
we use a counter to substitute every 100th digit of π in the base-2 number system
to a 1. The counter resets after hitting 100, so its storage is constant. The total
complexity is O(1), i.e. constant.

f) Same as in the previous question, but storing the counter requires log2 n bits. There-
fore the complexity is O (log2 n).

Problem 9.18

We use the relation var [X] = E [(X − E [X])2] = E [X2] + E [X]2, solve for E [X2] and
substitute X 7→ g(x;D)− F (x). Doing this, we observe that

E
[
X2
]

= E [X]2 + var [X]

E
[
(g(x;D)− F (x))2] = E [g(x;D)− F (x)]2︸ ︷︷ ︸

bias2

+ var [g(x;D)− F (x)]︸ ︷︷ ︸
variance

.

The last term for the variance is not immediately recognizable as the term given in the
book, but we note that

var [g(x;D)− F (x)] = E
[
(g(x;D)− F (x)− E [g(x;D)− F (x)])2]

= E
[
(g(x;D)− E [g(x;D)])2]
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since E [F (x)] = F (x). In other words, F (x) is the true function and it’s expected value
is itself. Combining the results above, we have

E
[
(g(x;D)− F (x))2] = E [g(x;D)− F (x)]2︸ ︷︷ ︸

bias2

+E
[
(g(x;D)− E [g(x;D)])2]︸ ︷︷ ︸

variance

as stated.

The bias can be negative, for instance if the estimate is much lower in value than the true
function. However, the squared bias is always non-negative. The variance is non-negative,
since

var [X] = E
[
(X − E [X])2

]
by definition, and the squared term is always non-negative.

Problem 9.23

We prove that the average of the leave-one-out means µ(·) is equivalent to the sample
mean µ̂ = x̄ by substitution. Starting with the definition of µ(·), we have

µ(·) =
1

n

n∑
i=1

µ(i) =
1

n

n∑
i=1

[
nx̄− xi
n− 1

]
=

1

n(n− 1)

n∑
i=1

[nx̄− xi]

=
1

n(n− 1)

[
n2x̄− nx̄

]
=
nx̄− x̄
n− 1

= x̄ =
1

n

n∑
i=1

xi.

Problem 9.26

There is an error in Equation (23) in chapter 9 in the book. The equation cannot possibly
measure the variance (the uncertainty) of a mean value. To see this, consider two data
sets and the results of applying Equation (23):

D1 = {0, 0, 1, 1} 7→(23) 0.75

D2 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 7→(23) 4.75

Clearly we are more certain about the mean of D2 than D1, but this is not reflected in
the estimate of the variance of the mean. Equation (23) should be

σ̂2 =
1

n(n− 1)

n∑
i=1

(xi − µ̂)2 ,

since

var
[
X̄
]

= var

[
1

n

n∑
i=1

Xi

]
=

1

n2

n∑
i=1

var [Xi] =
1

n
var [X] =

1

n(n− 1)

n∑
i=1

(xi − µ̂)2 .

Then D1 7→ 0.08333 and D2 7→ 0.0131578, which is more in line with what we’d expect—
more observations reduce the uncertainty.
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Onto the problem at hand: to show that Equation (26) reduces to the above, we write

µ(i) − µ(·) =

[
nx̄− xi
n− 1

]
− x̄ =

x̄− xi
n− 1

.

Squaring this and pulling (n− 1)2 out of the sum yields the relationship

var [µ̂] =
n− 1

n

n∑
i=1

(
µ(i) − µ(·)

)2
=
n− 1

n

n∑
i=1

(
x̄− xi
n− 1

)2

=
1

n(b− 1)

n∑
i=1

(x̄− xi)2

as desired.

Problem 9.34

See Figure 20 on page 68 for a plot accompanying this solution.

a) We find the maximum likelihood estimate for x` and xu to be

x̂` = minD = 0.2 x̂u = maxD = 0.9.

Noe that these maximum likelihood estimates are biased. The value of x̂` will be
greater than the true value of x`, and the value of x̂u will be smaller than the true
value of xu. The unbiased estimates are

x̂u = minD +
n

n− 1
(maxD −minD)

x̂` = minD − 1

n− 1
(maxD −minD)

b) The estimates are µ̂ = 0.514 and σ̂ = 0.223, and the maximum likelihood estimate
of σ is biased.

c) The problem states that there is no prior reason to assume one model over the
other, so P (h1) = P (h2) = 0.5. We will not make any assumptions on the range of
parameter values in θ, so the term p(θ̂ | hi)∆θ in Equation (42) in the book is set
to 1. What’s left is to evaluate lnP (D | θ̂, hi), which becomes

lnP (D | θ̂, h1) =
n∑
i=1

ln p(xi | x̂` = 0.2, x̂u = 0.9) =

(
1

0.7

)7

≈ 2.497

lnP (D | θ̂, h2) =
n∑
i=1

ln p(xi | µ̂ = 0.514, σ̂ = 0.223) ≈ 0.567

We decide on model h1, since it’s associated with much greater likelihood.

Problem 9.37

The plot for this problem found in Figure 21 on page 68. To create the plot, and outer
loop for values of n was used. For each value of n, a true value of p was set. Then given
(n, p), a range of values for a 95 % confidence interval was computed. These values were
stored and plotted. Notice that the graph is somewhat jagged when n is small because of
the discrete structure of the problem.
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Figure 20: Plot of data and models for Problem 9.34.
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Figure 21: Plot associated with Problem 9.37.

Problem 9.40

We wish to maximize the likelihood P (D | θ) = P (k | p), where the model is given by the
binomial distribution P (k | p) =

(
n
k

)
pk(1− p)n−k. The log-likelihood becomes

lnP (k | p) = ln

(
n

k

)
+ k ln p+ (n− k) ln(1− p),

and differentiating with respect to p and setting this to zero yields

∂ lnP (k | p)
∂p

=
k

p
+
n− k
p− 1

= 0.

The maximum likelihood is the p̂ such that the above expression is zero, and solving for
p yields p̂ = k/n as stated in the problem text.
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2.10 Unsupervised learning and clustering

Problem 10.7

The log-likelihood of a mixture is given by the expression

`(α) =
n∑
k=1

ln p (xk | α) =
n∑
k=1

ln

(
c∑
j=1

p (xk | ωj, α)P (ωj)

)
.

We’ll use the first expression above, differentiate with respect to the parameter α, and
then expand the sum and differentiate through it with respect to α.

Executing the plan outlined above, we observe that

∂`(α)

∂α
=

n∑
k=1

1

p (xk | α)

∂

∂α
p (xk | α)

=
n∑
k=1

1

p (xk | α)

∂

∂α

(
c∑
j=1

p (xk | ωj, α)P (ωj)

)
(by definition)

=
n∑
k=1

1

p (xk | α)

c∑
j=1

P (ωj)
∂p (xk | ωj, α)

∂α

=
n∑
k=1

c∑
j=1

P (ωj)

p (xk | α)

∂p (xk | ωj, α)

∂α
. (constant into sum)

Since (lnx)′ = x′/x by the chain rule of calculus, the equation x′ = x(lnx)′ holds too.
Using this on the last factor, we observe that

n∑
k=1

c∑
j=1

P (ωj)

p (xk | α)

∂p (xk | ωj, α)

∂α
=

n∑
k=1

c∑
j=1

P (ωj)

p (xk | α)
p (xk | ωj, α)

∂ ln p (xk | ωj, α)

∂α
.

As stated in the problem text, the first two factors may be simplified using Bayes theorem,
since

P (ωj | xk, α) =
p(xk | ωj, α)P (ωj | α)

p(xk, | α)
=
p(xk | ωj, α)P (ωj)

p(xk, | α)

when ωj is independent of α, i.e. P (ωj | α) = P (ωj). We have completed the problem,
since applying the simplification due to Bayes theorem yields the desired result.

Problem 10.11

a) Solving this problem requires knowledge of matrix calculus. We will differentiate
the second term, and then the first term, and finally combine the results. The
reason we start with the second term is that it is easier.
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Second term Let’s start by differentiating xTAx with respect to an element Aij.
This is functionally equivalent to the second term in the problem statement, and
solving this solves the original problem. If A is symmetric, then

∂xTAx

∂Aij
=
∂
∑

i

∑
j xiAijxj

∂Aij
=

{
xixj if i = j

2xixj if i 6= j

}
= (2− δij)xixj.

First term Let’s now consider differentiating f(A) = ln (detA) with respect to
an element Aij. This is functionally equivalent to the first term in the problem
statement. We’ll make use of Jacobi’s formula4, which is given by

d

dt
detA(t) = tr

(
adj(A(t))

dA(t)

dt

)
,

where tr(A) is the trace of A, and adj(A) is the adjugate of A.

We differentiate using the chain rule and apply Jacobi’s formula to obtain

∂ ln (detA)

∂Aij
=

1

detA

∂ detA

∂Aij
=

1

detA
tr

(
adj(A)

∂A

∂Aij

)
.

Now comes the part where we consider the diagonal elements i = j and off-diagonal
elements i 6= j separately. We carry out the differentiation dA/∂Aij and obtain

1

detA
tr

(
adj(A)

∂A

∂Aij

)
=


1

detA
tr (adj(A) [Eii]) if i = j

1

detA
tr (adj(A) [Eij +Eji]) if i 6= j

 ,

where by Eij we mean a matrix of zeros everywhere except in the ijth position. We
do not show it here, but by the definition of Eij and the trace, it should not be too
hard to see that tr (AEij) = Aji. Using the above in combination with the fact
that adj(A)ji/ det(A) = A−1

ji and the fact that the inverse of a symmetric matrix is
symmetric, we observe that the above expression may be written using the Kroneker
delta symbol δij as

adj(A)ii
detA

if i = j

adj(A)ji
detA

+
adj(A)ij

detA
if i 6= j

 =

{
A−1
ii if i = j

A−1
ji +A−1

ij if i 6= j

}
= (2− δij)A−1

ij .

Putting it all together We have established that if A is a symmetric matrix, then

∂xTAx

∂Aij
= (2− δij)xixj and

∂ ln (detA)

∂Aij
= (2− δij)A−1

ij .

4See Wikipedia for details: https://en.wikipedia.org/wiki/Jacobi’s_formula
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Applying the two results above to the problem at hand yields

∂

∂σpq(i)
(ln p (xk | ωi,θi)) =

∂

∂σpq(i)

(
ln

∣∣Σ−1
i

∣∣1/2
(2π)d/2

− 1

2
(xk − µi)T Σ−1

i (xk − µi)

)

=
∂

∂σpq(i)

(
1

2
ln
∣∣Σ−1

i

∣∣− 1

2
(xk − µi)T Σ−1

i (xk − µi)
)

=

(
1− δpq

2

)
σpq(i)−

(
1− δpq

2

)
(xp(k)− µp(i)) (xq(k)− µq(i))

=

(
1− δpq

2

)
[σpq(i)− (xp(k)− µp(i)) (xq(k)− µq(i))] ,

which corresponds with Equation (23) in chapter 10 in the book as expected.

b) We will extend the result from the previous sub-problem to every entry in the matrix,
then solve for the maximum likelihood estimate for Σ.

If we extend the differentiation formulas from the previous sub-problem to every
entry in the matrix, we recognize that

∂xTAx

∂A
= xxT and

∂ ln(detA)

∂A
= A−1.

Applying these equations to the second factor in the solution to problem 7, and
ignoring constants, we obtain a result proportional to

∂

∂Σ−1
(ln p (xk | ωi,θi)) = Σ− (xk − µi) (xk − µi)T .

Our problem becomes that of solving the equation

∂`

∂Σ−1
=

n∑
k=1

c∑
i=1

P (ωi | xk,θ)
[
Σ− (xk − µi) (xk − µi)T

]
= 0

⇒ Σ
n∑
k=1

c∑
i=1

P (ωi | xk,θ) =
n∑
k=1

c∑
i=1

P (ωi | xk,θ)
[
xkx

T
k − 2xkµ

T
i + µiµ

T
i

]
(10)

for Σ. We will now examine each term of Equation (10) separately.

Notice first that the left hand side of equation (10) becomes

Σ
n∑
k=1

c∑
i=1

P (ωi | xk,θ) = Σn
n∑
k=1

c∑
i=1

p (xk, ωi | θ) = Σn,

where we have made use of Bayes theorem.

Moving to the right hand side of Equation (10), we see that

n∑
k=1

c∑
i=1

P (ωi | xk,θ)xkx
T
k =

n∑
k=1

xkx
T
k ,
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since the sum of the probabilities of each class c must be 1 for each data point k.

The cross term of the right-hand side of Equation (10) becomes

−2
n∑
k=1

c∑
i=1

P (ωi | xk,θ)xkµ
T
i = −2

c∑
k=1

(
n∑
k=1

P (ωi | xk,θ)xk

)
µTi

= −2
c∑

k=1

(
n∑
k=1

nP (xk | ωi,θ)P (ωi | θ)xk

)
µTi

= −2
c∑

k=1

nµiP (ωi | θ)µTi = −2n
c∑

k=1

P (ωi | θ)µiµ
T
i ,

where the second equality comes from Bayes theorem. In the the second to last
equality we used

∑n
k=1 p(xk | ωi)xk = µi.

Finally, the rightmost term of the right-hand side of Equation (10) becomes

n∑
k=1

c∑
i=1

P (ωi | xk,θ)µiµ
T
i = n

c∑
k=1

P (ωi | θ)µiµ
T
i ,

where again Bayes theorem was used.

Putting all these results back into Equation (10), we finally see that

Σn =
n∑
k=1

xkx
T
k − n

c∑
k=1

P (ωi | θ)µiµ
T
i ,

and diving through by n gives the desired result.

Problem 10.12

a) Creating a plot of p(x | ω1) = N (0, 1) and p(x | ω2) = N (0, 1/2) is illuminating.
See figure 22 for such a plot, which reveals the significance of ln 2 immediately.

The likelihood of the mixture is given by

`(x1 | P (ω1)) = p(x1) =
P (ω1)√

2π
e−x

2
1/2 +

(1− P (ω1))√
π

e−x
2
1 ,

and using the logarithm will not aid us in our attempt to maximize this function.

Notice that for a given value of x1, the likelihood is linear in P (ω1), since

f(P (ω1)) = p(x1) = P (ω1) p(x | ω1) + (1− P (ω1)) p(x | ω1),

and it’s derivative with respect to P (ω1) is f ′(P (ω1)) = p(x | ω1)− p(x | ω2). Since
0 ≤ P (ω1) ≤ 1, there are two cases to consider:

(i) If f ′(P (ω1)) > 0, the likelihood is maximized by the choice P (ω1) = 1.
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Figure 22: Plot for problem 12, chapter 10.

(ii) If f ′(P (ω1)) < 0, the likelihood is maximized by the choice P (ω1) = 0.

If remains to investigate for which values of x1 the derivative is positive or negative.

We take logarithms to study when p(x | ω1) > p(x | ω2) and vice versa, since
this determines the sign of the derivative. We compare p(x | ω1) = N (0, 1) and
p(x | ω2) = N (0, 1/2) by equating them, taking logarithms and using some algebra:

1√
2
e−x

2
1/2 = e−x

2
1 ⇔ ln 2 = x2

1.

When x2
1 < ln 2, we find that e−x

2
1 > 1√

2
e−x

2
1/2. This implies that p(x | ω2) > p(x |

ω1) and the derivative of the linear function is negative. In that case the likelihood
is maximized by P (ω1) = 0, as claimed in the problem.

b) This is simply the reverse case of what we saw in the previous problem. When
x2

1 > ln 2 we find that p(x | ω1) > p(x | ω2) and the derivative is positive. In this
case the likelihood is maximized by P (ω1) = 1.

c) With two Gaussians having the same mean, but different stanard deviations, the
maximum likelihood estimate of P (ω1) is either 0 or 1 when one data point x1 is
seen. The maximum likelihood assigns all weight to the prior corresponding to the
class with the largest class-conditional density p(x | ωi).

Problem 10.14

From the solution to Problem 6.39, we know that the derivative of xTAx is (A+AT )x.
This result is also in Appendix A.2 in [Duda et al., 2000]. To find the minimizer, we
differentiate with respect to x and find that

∂J(x)

∂x
=

m∑
k=1

(
Σ−1 + Σ−T

)
(xk − x∗) = 0.
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Since Σ may be moved outside of the sum and is non-singular, we require that

m∑
k=1

(xk − x∗) = 0 ⇔
m∑
k=1

xk = mx∗.

Dividing by m, we see that x∗ = x̄, which is what we wanted to demonstrate.

Problem 10.16

A distance computation between two d-dimensional vectors is O(d). Pseudocode makes
the runtime evident, since we essentially only need to count the number of loops.

for each iteration (T):

for each data point (n):

for each cluster center (c):

compute distance dist(x_j, mu_i) (d)

The algorithm has runtime O(T ) ·O(n) ·O(c) ·O(d) = O(Tncd) as claimed.

Problem 10.21

Let us assume that n ≥ c and that there exists an empty subset. Then there must
exist at least one non-empty subset with more than one sample. An example would be
{{x1} , {} , {x2,x3}}, where the second subset is empty, and the third subset has more
than one sample. We show that moving a sample from a non-empty subset Dnon-empty to
an empty subset Dempty always decreases Je.

The sum-of-squared error over the empty subset Dempty does not contribute to Je, since
it’s only defined over non-empty subsets. Moving a single sample to Dempty contributes

1∑
i=1

‖xi −m‖2 = ‖x1 − x‖2 = ‖x1 − x1‖2 = 0

to Je, i.e. no contribution at all. In summary, moving a sample to Dempty does not alter
the contribution to Je from the subset Dempty—it’s zero in both cases.

The sum-of-squared error over the non-empty subset Dnon-empty does contribute to Je. If
Dnon-empty contains n samples whose mean is m, the contribution is

n∑
i=1

‖xi −m‖2 .

Now we remove a sample xn from the subset, to put in the empty subset instead. As long
as the sample xn that we remove is not identical to the mean, we have

n∑
i=1

‖xi −m‖2 =
n−1∑
i=1

‖xi −m‖2 + ‖xn −m‖2 >
n−1∑
i=1

‖xi −m‖2 .
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In summary, moving a sample from Dnon-empty does alter the contribution to Je from the
subset Dnon-empty—it always decreases.

Combining the statements above reveals that if any empty subset exists, we can always
decrease Je. As a result there are no empty subsets in a partition that minimizes Je. As
an example, the partition {{x1} , {x2} , {x3}} will be superior to {{x1} , {} , {x2,x3}}.

Problem 10.32

a) Let’s study the similarity measure under the assumption that xi, yi ∈ {−1, 1}. From
the definition, we have that

s(x,y) =
xTy

‖x‖ ‖y‖
=

∑d
i=1 xiyi√
d
√
d

=

∑d
i=1 [xi = yi]−

∑d
i=1 [xi 6= yi]

d
,

where [ · ] is the Iverson bracket, returning 1 if the condition in the bracket is true,
and 0 if it’s false. An interpretation is therefore

s(x,y) =

∑d
i=1 [xi = yi]−

∑d
i=1 [xi 6= yi]

d
=

num equal− num different

total number
,

and we also note that −1 ≤ s(x,y) ≤ 1 are tights bounds, realized when every
element is different, or element entry is equal, respectively.

b) This is shown using algebra. We solve the problem by realizing that

‖x− y‖2 =
d∑
i=1

(xi − yi)2 =
d∑
i=1

x2
i −

d∑
i=1

2xiy
2
i +

d∑
i=1

y2
i

= d− 2xTy − d = 2d− 2d
xTy

d
= 2s(1− s(x,y)).

Problem 10.35

The smallest increase happens when we merge clusters so that their contribution to Je
increases by as little as possible. We consider the error from clusters i and j before and
after merging, and show that the difference in contribution to Je is given by the expression
in the problem statement.

The contribution before merging is∑
xi∈Di

‖xi −mi‖2 +
∑
xj∈Dj

‖xj −mj‖2 .

The contribution after merging is∑
xk∈Di∪Dj

‖xk −m‖2 =
∑
xi∈Di

‖xi −m‖2 +
∑
xj∈Dj

‖xj −m‖2 ,
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where m = mini/(ni + nj) +mjnj/(ni + nj) is the new mean after merging the clusters.

We now compute the difference, which becomes

diff = after merging− before merging

=

∑
xi∈Di

‖xi −m‖2 +
∑
xj∈Dj

‖xj −m‖2

−
∑
xi∈Di

‖xi −mi‖2 +
∑
xj∈Dj

‖xj −mj‖2


=
∑
xi∈Di

(
‖xi −m‖2 − ‖xi −mi‖2)+

∑
xj∈Dj

(
‖xj −m‖2 − ‖xj −mj‖2) (11)

To make progress with Equation (11), we note that∑
xi∈Di

‖xi −m‖2 − ‖xi −mi‖2 =
∑
xi∈Di

‖(xi −mi)− (m−mi)‖2 − ‖xi −mi‖2

=
∑
xi∈Di

‖xi −mi‖2 + ‖m−mi‖2 − ‖xi −mi‖2

=
∑
xi∈Di

‖m−mi‖2 ,

where we have used the fact that the cross term
∑
xj∈Dj −2(xi −mi)

T (m−mi) is zero.

Substituting this result back into Equation (11) we obtain

diff = after merging− before merging

=
∑
xi∈Di

‖m−mi‖2 +
∑
xj∈Dj

‖m−mj‖2

= ni ‖m−mi‖2 + nj ‖m−mj‖2 . (12)

Now we compute the difference

m−mi =

(
mi

ni
ni + nj

+mj
nj

ni + nj

)
−mi =

nj
ni + nj

(mj −mi),

and use this result in Equation (12) to see that

diff = after merging− before merging

= ni
n2
j

(ni + nj)2
‖mj −mi‖2 + nj

n2
i

(ni + nj)2
‖mi −mj‖2

=
ninj

(ni + nj)2
(nj + ni) ‖mi −mj‖2

=
ninj
ni + nj

‖mi −mj‖2 .

This is the difference is the sum-of-squared error before and after merging. Of course it
is never negative, since merging can only increase Je. The smallest increase results from
merging clusters i and j so that this difference is minimized.
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