Cheat Sheet MAT261

Tommy Odland - Num. Lin. Alg. - Edited: November 30, 2016

Fundamentals

- Vector norms are $\|x\|_{p}$, where p is usually in $\{1,2, \infty\}$.
- Matrix norms include the Frobenius norm $\|A\|_{F}$ and the induced vector norms

$$
\|A\|_{p}=\sup _{\|x\|_{p}=1}\|A x\|_{p}
$$

- The SVD (singular value decomposition) of A is $A=U \Sigma V^{*}$, where U and V are orthogonal and Σ is diagonal. There are full and reduced versions. For hermitian $\left(A^{*}=A\right)$ matrices, $\operatorname{eig}(A)=\operatorname{svd}(A)$.

QR and least SQ

- A projection matrix is idempotent $P^{2}=P$. The orthogonal projection onto q is $P_{q}=\frac{q q^{*}}{q^{*} q}$. The complementary projector is $P_{\perp q}=\frac{q^{q}}{I}-$ $\frac{q q^{*}}{q^{*} q}$.
- The QR-factorization of A is $A=Q R$, where Q is orthogonal and R is upper triangular. It comes in a full and reduced flavor.
- Gram-Schmidt takes a set of vectors $\left\langle a_{1}, a_{2}, \ldots, a_{m}\right\rangle$ and creates an orthogonal basis for the same space $\left\langle q_{1}, q_{2}, \ldots, q_{m}\right\rangle$. Classical is unstable, it "looks back". Modified is stable, it "looks ahead". MGS has operation count $\sim 2 m n^{2}$.
- Householder reflectors F are an involution $F^{2}=I$. Householder computes $A=Q R$ by orthogonal triangularization, while GramSchmidt is a process of triangular orthogonalization. $Q R$ by Householder has operation count $\sim 2 m n^{2}-\frac{2}{3} n^{3}$.
- The least SQ problem is to minimize $\|r\|_{2}=\|b-A x\|_{2}$. The normal equations are $A^{*} A x=A^{*} b$. Least SQ is solved by Cholesky on normal eqns (fast), QRfactorization (standard method, good, stable) or by the SVD (good when A is close to rank-deficient).

\triangleright Conditioning, stability

- Problems $f: X \rightarrow Y$ have conditioning. X is the input data, and Y is the solution. Conditioning measures how sensitive the problem is to a perturbation of the input.
- The relative condition number is

$$
\kappa=\lim _{\delta \rightarrow 0} \sup _{\|\delta x\|<\delta}\left(\frac{\|\delta f\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|}\right)
$$

- Conditioning of a matrix $\kappa(A)=\|A\|\left\|A^{-1}\right\|$. In the 2 norm, $\|A\|\left\|A^{-1}\right\|=\sigma_{1} / \sigma_{m}$.
- The conditioning of a system of equations $f: A \rightarrow x$ is $\kappa(A)$. This is the same conditioning as $f: A \rightarrow b$, i.e. matrix-vector multiplication.
- The smallest number representable on a computer is $\epsilon_{\text {machine }}$, henceforth denoted ϵ_{m}. On my system, it's $\approx 2 \times 10^{-16}$. It's the smallest gap in floating arithmetic representation, a subset of the reals $\mathbb{F} \subset \mathbb{R}$.
- The fundamental axiom of floating point arithmetic is: There exists $|\epsilon| \leq \epsilon_{m}$ so that

$$
(x \circledast y)=(x * y)(1+\epsilon)
$$

- A problem is modeled as $f: X \rightarrow Y$, and an algorithm is modeled as $\tilde{f}: X \rightarrow Y$. An algorithm may be accurate, stable or backward stable. Accurate if the computed solution is close to the true solution. Stable if a small perturbation of the input results in small perturbation of the output (it does not grow unbounded). Backward stable if the algorithm solves a perturbed problem exactly.
- To prove an algorithm $\tilde{f}: X \rightarrow Y$ backward stable, one must express every floating point error as a perturbation of the input X.
- The accuracy of a backward stable algorithm is given by

$$
\frac{\|\tilde{f}(x)-f(x)\|}{\|f(x)\|}=O\left(\kappa(x) \epsilon_{m}\right)
$$

- Most numerical algorithms in use are backward stable. QR by Householder is backward stable, however \tilde{Q} and \tilde{R} are individually no good. Errors are "diabolically correlated."
- Theorems on the conditioning of the least SQ problem $\left(\min _{x}\|b-A x\|_{2}\right)$ exist, both in terms of $f: b \rightarrow x$ and $f: A \rightarrow x$.
- The least SQ problem may be solved by QR with Householder (good, backward stable), matlab's $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$; (very good, QR with column pivoting). The normal equations $A^{*} A x=A^{*} b$ should never be used, because $\kappa(A)$ is squared when forming $A^{*} A$.

\triangleright System of equations

- The LU-factorization of A is $A=L U$, where U is upper-triangular and L is lower triangular with 1's on the diagonal. The operation count of LU-factorization by Gaussian elimination is $\sim \frac{2}{3} m^{3}$. Without pivoting, Gaussian elimination is neither stable nor backward stable.
- Complete pivoting searches for maximum pivot in rows and columns. Partial pivoting searches in rows only, forming $P A=L U$. Partial achieves good results with less work. Pivoting controls instability, in L, all subdiagonal entries become <1.
- The growth factor is defined as

$$
\rho=\frac{\max _{i, j}\left|u_{i j}\right|}{\max _{i, j}\left|a_{i j}\right|}
$$

If ρ is of order 1 , elimination is stable. In general $\|\delta A\| /\|A\|=O\left(\rho \epsilon_{m}\right)$. The worst case is $\rho=2^{m-1}$. Useless in practice, but also extremely rare in practice.

- Cholesky factorization is LUfactorization of a symmetric matrix, so that $A=R^{*} R$, where R is upper-triangular. Operation count is half of Gaussian elimination, i.e. $\sim m^{3} / 3$. Always stable, no need for pivoting.

\triangleright Eigenvalues

- The eigenvalue decomposition of a matrix is $A=X \Lambda X^{-1}$. The characteristic polynomial is $p_{A}(z)=\operatorname{det}(A-I z)$, where $p_{A}(\lambda)=0 \Leftrightarrow$ λ is an eigenvalue.
- The Schur factorization of A is $A=$ $Q T Q^{*}$, where T is upper-triangular. It's an eigenvalue-revealing factorization. When $A=A^{*}, T$ is diagonal.
- The Hessenberg factorization is $A=$ $Q H Q^{*}$, where H is in Hessenberg form (all entries below sub-diagonal are 0). When $A=A^{*}, H$ is tridiagonal.
- Eigenvalue algorithms usually consist of the following steps:
- Direct: Bring A to Hessenberg form in $\sim \frac{4}{3} m^{3}$ operations (Hermitian A)
- Iterative: Bring A to tridiagonal (diagonal if $\left.A^{*}=A\right)$ in $O\left(m^{2}\right)$ flops
- Householder transforms A into Hessenberg form H using $\sim \frac{10}{3} m^{3}$ operations. If $A=A^{*}$, the operation count is reduced to $\sim \frac{4}{3} m^{3}$.
- Power iteration is (1) choose random v, (2) multiply by A and normalize, (3) repeat (2). It will yield the largest eigenvector. Let $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\ldots$, then convergence is $O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)$.
- Inverse iteration is based on the fact that A and $(A-\mu I)^{-1}$ have the same eigenvalue. We use power iteration on $(A-\mu I)^{-1}$, where μ is an eigenvalue estimate.
- The Rayleigh quotient is the solution to $\min _{\alpha}\|A x-\alpha x\|$, and it's given by

$$
r(x)=\frac{x^{T} A x}{x^{T} x}
$$

When x is an eigenvector $v, r(v)=\lambda$.

- Rayleigh quotient iteration combines inverse iteration (finds eigenvector) with the Rayleigh quotient (find eigenvalue) to achieve cubic convergence $O\left(\epsilon^{3}\right)$.
- The QR-algorithm takes the QRfactorization of A, multiplies back in reverse order, and repeats. It converges to a Schurfactorization of A. It's a stable approach to the more intuitive simultaneous iteration. Using shifts speeds up convergence.

	quasi-direct	iterative
unstable	simul. iter.	QR of K_{n}
subtle, stable	QR-algorithm	Arnoldi

- Shifted QR-algorithm is backward stable, cost is $\sim \frac{4}{3} m^{3}$, with cubic convergence.
- The Jacobi-algorithm for symmetric A is based on orthogonal rotations. It "rotates" every off-diagonal entry in sweeps. Every sweep reduces the size of off-diagonals. Quadratic convergence. Based on similarity transform $J^{T} A J$.
- The bisection algorithm works on tridiagonal A. It's used to find sub-sections of eigenvalues. Based on sign changes in $\operatorname{det}\left(A^{(1)}\right), \operatorname{det}\left(A^{(2)}\right), \operatorname{det}\left(A^{(3)}\right), \ldots$, the eigenvalue interlace property and the determinant three-term recurrence.
- Computing the SVD in two phases: (1) bidiagonalize with Householder then (2) chase zeros. Bidiagonalization is done in $\sim 4 m n^{2}-$ $\frac{4}{3} n^{3}$ flops. If $m \gg n$, use QR-factorization first.

Iterative methods

	$A x=b$	$A x=\lambda x$
$A=A^{*}$	CG	Lanczos
$A \neq A^{*}$	GMRES, CGN, BCG	Arnoldi

- Krylov subspace $\mathcal{K}_{n}=\left\langle b, A b, A^{2} b, \ldots, A^{n-1} b\right\rangle$
- Krylov matrix $K_{n}=\left[b|A b| A^{2} b|\ldots| A^{n-1} b\right]$
- Krylov methods allows one to black box matrix multiplication, so that $A: x \rightarrow A x$.
- The Arnoldi iteration starts with $A Q_{n}=$ $Q_{n+1} \tilde{H}_{n}$. We run modified Gram-Schmidt on $A q_{n}=h_{1 n} q_{1}+\ldots+h_{n n} q_{n}$. For every n, $\left\langle q_{1}, \ldots, q_{n}\right\rangle$ is an orthonormal basis for \mathcal{K}_{n}.
- The eigenvalues of \tilde{H}_{n} in $A=Q H Q^{*}$ are the Ritz values - approximations to the eigenvalues of A. Extreme eigenvalues are found first. The polynomial approximation problem is $\left\|p^{n}(A) b\right\|=$ minimum, where $p^{n} \in$ $P^{n}=$ \{polynomials with $\left.1 x^{n}+\ldots\right\}$.
- GMRES (generalized minimal residuals) solves $A x=b$. At each step, GMRES finds $x_{n} \in \mathcal{K}_{n}$ such that the norm of the residual $\left\|r_{n}\right\|=\left\|b-A x_{n}\right\|$ is minimized. The algorithm uses Arnoldi iterations. Convergence is monotonic, the residual at step m is 0 , and convergence depends on eigenvalues.
- The Lanczos iteration is like Arnoldi for symmetric matrices, the equation becomes $A Q_{n}=Q_{n+1} \tilde{T}_{n}$, where T is tridiagonal.
- The CG (Conjugate Gradient) algorithm minimizes $\phi(x)=\frac{1}{2} x^{T} A x-x^{T} b$ by generating $x_{n} \in \mathcal{K}_{n}$ such that the error $\left\|e_{n}\right\|_{A}$ is minimized at each step.
- Properties of CG include orthogonal residuals $r_{i}^{T} f_{j}=0, A$-conjugate
$\left(p_{i}^{T} A p_{j}=0\right)$ search directions p, x_{n} is the unique minimizer in \mathcal{K}_{n} and monotonic convergence. Top algorithm for solving $A x=b$ when $A=A^{*}>0$ (s.p.d).
- Two important convergence theorems are

$$
\frac{\left\|e_{n}\right\|_{A}}{\left\|e_{0}\right\|_{A}} \leq \inf _{p \in P_{n}} \max _{\lambda \in \Lambda(A)}|p(\lambda)|
$$

and

$$
\frac{\left\|e_{n}\right\|_{A}}{\left\|e_{0}\right\|_{A}} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{n}
$$

For small $\kappa(A)$, convergence is superlinear. Preconditioning can speed up convergence.

- CGN (Conjugate Gradients on Normal equations) is a method where $A x=b$ is solved ($A \neq A^{T}$) by solving $A^{*} A x=A^{*} b$ by CG. The condition number is squared, and convergence is determined by singular values of A, not the eigenvalues as with CG.
- Tridiagonal biorthogonalization (or nonsymmetric Lanczos iteration) takes a nonsymmetric A to $A=V T V^{-1}$ iteratively. T is tridiagonal, but V is not orthogonal.
- Biconjugate gradients (BCG) solves $A x=$ b for non-symmetric A. Like CG, but with 2 search directions Other variants include QMR (quasi-minimal residuals), BiCGSTAB is version of BCG with smoother convergence.
- Preconditioning aims to solve $M^{-1} A x=$ $M^{-1} b$ instead of $A x=b . \quad M^{-1}$ should be close to A^{-1}. Trivial cases are $M^{-1}=A^{-1}$ and $M^{-1}=I$. To preserve a hermitian A, we can set $M=C C^{*}$. $M^{-1} A$ should be close to normal. Some preconditioners are $M=\operatorname{diag}(A), M=\operatorname{triu}(A)$ and incomplete Cholesky. Preconditioners are very important in practical applications.

$>$ References

- Lloyd N. Trefethen. Numerical Linear Algebra. Society for Industrial and Applied Mathematics, 1997.

