
Cheat Sheet MAT261
Tommy Odland – Num. Lin. Alg. – Edited: November 30, 2016

B Fundamentals

• Vector norms are ‖x‖p, where p is usually in
{1, 2,∞}.

• Matrix norms include the Frobenius norm
‖A‖F and the induced vector norms

‖A‖p = sup
‖x‖p=1

‖Ax‖p

• The SVD (singular value decomposition) of
A is A = UΣV ∗, where U and V are orthog-
onal and Σ is diagonal. There are full and
reduced versions. For hermitian (A∗ = A)
matrices, eig(A) = svd(A).

B QR and least SQ

• A projection matrix is idempotent P 2 = P .
The orthogonal projection onto q is Pq = qq∗

q∗q
.

The complementary projector is P⊥q = I −
qq∗

q∗q
.

• The QR-factorization of A is A = QR,
where Q is orthogonal and R is upper trian-
gular. It comes in a full and reduced flavor.

• Gram-Schmidt takes a set of vectors
〈a1, a2, ..., am〉 and creates an orthogonal ba-
sis for the same space 〈q1, q2, ..., qm〉. Classi-
cal is unstable, it “looks back”. Modified is
stable, it “looks ahead”. MGS has operation
count ∼ 2mn2.

• Householder reflectors F are an involution
F 2 = I. Householder computes A = QR by
orthogonal triangularization, while Gram-
Schmidt is a process of triangular orthog-
onalization. QR by Householder has opera-
tion count ∼ 2mn2 − 2

3
n3.

• The least SQ problem is to minimize
‖r‖2 = ‖b − Ax‖2. The normal equa-
tions are A∗Ax = A∗b. Least SQ is solved
by Cholesky on normal eqns (fast), QR-
factorization (standard method, good, sta-
ble) or by the SVD (good when A is close to
rank-deficient).

B Conditioning, stability

• Problems f : X → Y have conditioning.
X is the input data, and Y is the solu-
tion. Conditioning measures how sensitive
the problem is to a perturbation of the in-
put.

• The relative condition number is

κ = lim
δ→0

sup
‖δx‖<δ

(
‖δf‖
‖f(x)‖

/
‖δx‖
‖x‖

)
• Conditioning of a matrix κ(A) = ‖A‖‖A−1‖.

In the 2 norm, ‖A‖‖A−1‖ = σ1/σm.

• The conditioning of a system of equations
f : A → x is κ(A). This is the same con-
ditioning as f : A → b, i.e. matrix-vector
multiplication.

• The smallest number representable on a
computer is εmachine, henceforth denoted εm.
On my system, it’s ≈ 2 × 10−16. It’s the
smallest gap in floating arithmetic represen-
tation, a subset of the reals F ⊂ R.

• The fundamental axiom of floating point
arithmetic is: There exists |ε| ≤ εm so that

(x~ y) = (x ∗ y) (1 + ε)

• A problem is modeled as f : X → Y , and
an algorithm is modeled as f̃ : X → Y . An
algorithm may be accurate, stable or back-
ward stable. Accurate if the computed solu-
tion is close to the true solution. Stable if
a small perturbation of the input results in
small perturbation of the output (it does not
grow unbounded). Backward stable if the al-
gorithm solves a perturbed problem exactly.

• To prove an algorithm f̃ : X → Y backward
stable, one must express every floating point
error as a perturbation of the input X.

• The accuracy of a backward stable algorithm
is given by

‖f̃(x)− f(x)‖
‖f(x)‖

= O (κ(x) εm)

• Most numerical algorithms in use are back-
ward stable. QR by Householder is back-
ward stable, however Q̃ and R̃ are individu-
ally no good. Errors are “diabolically corre-
lated.”



• Theorems on the conditioning of the least
SQ problem (minx‖b − Ax‖2) exist, both in
terms of f : b→ x and f : A→ x.

• The least SQ problem may be solved by QR
with Householder (good, backward stable),
matlab’s x = A \b; (very good, QR with
column pivoting). The normal equations
A∗Ax = A∗b should never be used, because
κ(A) is squared when forming A∗A.

B System of equations

• The LU-factorization of A is A = LU ,
where U is upper-triangular and L is lower
triangular with 1’s on the diagonal. The op-
eration count of LU-factorization by Gaus-
sian elimination is ∼ 2

3
m3. Without pivot-

ing, Gaussian elimination is neither stable
nor backward stable.

• Complete pivoting searches for maximum
pivot in rows and columns. Partial pivoting
searches in rows only, forming PA = LU .
Partial achieves good results with less work.
Pivoting controls instability, in L, all sub-
diagonal entries become < 1.

• The growth factor is defined as

ρ =
maxi,j|uij|
maxi,j|aij|

If ρ is of order 1, elimination is stable. In
general ‖δA‖/‖A‖ = O (ρεm). The worst
case is ρ = 2m−1. Useless in practice, but
also extremely rare in practice.

• Cholesky factorization is LU-
factorization of a symmetric matrix, so that
A = R∗R, where R is upper-triangular. Op-
eration count is half of Gaussian elimination,
i.e. ∼ m3/3. Always stable, no need for piv-
oting.

B Eigenvalues

• The eigenvalue decomposition of a matrix is
A = XΛX−1. The characteristic polynomial
is pA(z) = det (A− Iz), where pA(λ) = 0⇔
λ is an eigenvalue.

• The Schur factorization of A is A =
QTQ∗, where T is upper-triangular. It’s
an eigenvalue-revealing factorization. When
A = A∗, T is diagonal.

• The Hessenberg factorization is A =
QHQ∗, where H is in Hessenberg form (all
entries below sub-diagonal are 0). When
A = A∗, H is tridiagonal.

• Eigenvalue algorithms usually consist of the
following steps:

– Direct: Bring A to Hessenberg form in
∼ 4

3
m3 operations (Hermitian A)

– Iterative: Bring A to tridiagonal (diag-
onal if A∗ = A) in O(m2) flops

• Householder transforms A into Hessenberg
form H using ∼ 10

3
m3 operations. If A = A∗,

the operation count is reduced to ∼ 4
3
m3.

• Power iteration is (1) choose random v,
(2) multiply by A and normalize, (3) repeat
(2). It will yield the largest eigenvector.
Let |λ1| > |λ2| > ..., then convergence is
O(|λ2

λ1
|k).

• Inverse iteration is based on the fact that
A and (A−µI)−1 have the same eigenvalue.
We use power iteration on (A−µI)−1, where
µ is an eigenvalue estimate.

• The Rayleigh quotient is the solution to
minα‖Ax− αx‖, and it’s given by

r(x) =
xTAx

xTx

When x is an eigenvector v, r(v) = λ.

• Rayleigh quotient iteration combines in-
verse iteration (finds eigenvector) with
the Rayleigh quotient (find eigenvalue) to
achieve cubic convergence O(ε3).

• The QR-algorithm takes the QR-
factorization of A, multiplies back in reverse
order, and repeats. It converges to a Schur-
factorization of A. It’s a stable approach
to the more intuitive simultaneous iteration.
Using shifts speeds up convergence.

quasi-direct iterative

unstable simul. iter. QR of Kn

subtle, stable QR-algorithm Arnoldi

• Shifted QR-algorithm is backward stable,
cost is ∼ 4

3
m3, with cubic convergence.

• The Jacobi-algorithm for symmetric A is
based on orthogonal rotations. It “rotates”
every off-diagonal entry in sweeps. Ev-
ery sweep reduces the size of off-diagonals.
Quadratic convergence. Based on similarity
transform JTAJ .



• The bisection algorithm works on tridi-
agonal A. It’s used to find sub-sections
of eigenvalues. Based on sign changes
in det

(
A(1)

)
, det

(
A(2)

)
, det

(
A(3)

)
, ..., the

eigenvalue interlace property and the deter-
minant three-term recurrence.

• Computing the SVD in two phases: (1) bidi-
agonalize with Householder then (2) chase
zeros. Bidiagonalization is done in∼ 4mn2−
4
3
n3 flops. If m � n, use QR-factorization

first.

B Iterative methods

Ax = b Ax = λx

A = A∗ CG Lanczos

A 6= A∗ GMRES, CGN, BCG Arnoldi

• Krylov subspace Kn = 〈b, Ab,A2b, ..., An−1b〉
• Krylov matrix Kn = [b|Ab|A2b|...|An−1b]

• Krylov methods allows one to black box ma-
trix multiplication , so that A : x→ Ax.

• The Arnoldi iteration starts with AQn =
Qn+1H̃n. We run modified Gram-Schmidt
on Aqn = h1nq1 + ... + hnnqn. For every n,
〈q1, ..., qn〉 is an orthonormal basis for Kn.

• The eigenvalues of H̃n in A = QHQ∗ are the
Ritz values – approximations to the eigen-
values of A. Extreme eigenvalues are found
first. The polynomial approximation prob-
lem is ‖pn(A)b‖ = minimum, where pn ∈
P n = {polynomials with 1xn + ...}.
• GMRES (generalized minimal residuals)

solves Ax = b. At each step, GMRES finds
xn ∈ Kn such that the norm of the residual
‖rn‖ = ‖b − Axn‖ is minimized. The algo-
rithm uses Arnoldi iterations. Convergence
is monotonic, the residual at step m is 0, and
convergence depends on eigenvalues.

• The Lanczos iteration is like Arnoldi for
symmetric matrices, the equation becomes
AQn = Qn+1T̃n, where T is tridiagonal.

• The CG (Conjugate Gradient) algorithm
minimizes φ(x) = 1

2
xTAx − xT b by gener-

ating xn ∈ Kn such that the error ‖en‖A is
minimized at each step.

– Properties of CG include orthogo-
nal residuals rTi fj = 0, A-conjugate

(pTi Apj = 0) search directions p, xn is
the unique minimizer in Kn and mono-
tonic convergence. Top algorithm for
solving Ax = b when A = A∗ > 0
(s.p.d).

– Two important convergence theorems
are

‖en‖A
‖e0‖A

≤ inf
p∈Pn

max
λ∈Λ(A)

|p(λ)|

and

‖en‖A
‖e0‖A

≤ 2

(√
κ− 1√
κ+ 1

)n

For small κ(A), convergence is super-
linear. Preconditioning can speed up
convergence.

• CGN (Conjugate Gradients on Normal equa-
tions) is a method where Ax = b is solved
(A 6= AT ) by solving A∗Ax = A∗b by CG.
The condition number is squared, and con-
vergence is determined by singular values of
A, not the eigenvalues as with CG.

• Tridiagonal biorthogonalization (or nonsym-
metric Lanczos iteration) takes a non-
symmetric A to A = V TV −1 iteratively. T
is tridiagonal, but V is not orthogonal.

• Biconjugate gradients (BCG) solves Ax =
b for non-symmetric A. Like CG, but
with 2 search directions Other variants in-
clude QMR (quasi-minimal residuals), Bi-
CGSTAB is version of BCG with smoother
convergence.

• Preconditioning aims to solve M−1Ax =
M−1b instead of Ax = b. M−1 should be
close to A−1. Trivial cases are M−1 = A−1

and M−1 = I. To preserve a hermitian A,
we can set M = CC∗. M−1A should be
close to normal. Some preconditioners are
M = diag(A), M = triu(A) and incomplete
Cholesky. Preconditioners are very impor-
tant in practical applications.

B References

• Lloyd N. Trefethen. Numerical Linear Al-
gebra. Society for Industrial and Applied
Mathematics, 1997.


