MAT252 cheat sheet (continuum mechanics)

Tommy Odland

Spectral theorem

Summation	$b_i = \sum_j a_{ij} x_j = a_{ij} x_j$	$\operatorname{div}(\mathbf{v}) = v_{i,i} = \frac{\partial v_i}{\partial x_i} = \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \dots$	
Symmetry	The matrix M is symmetric if $M^T = M$. If $M^T = -M$, the matrix		х
	is antisymmetric. Every n	natrix M can be expressed as:	

 $M = A + S = \underbrace{\frac{1}{2} \left(M - M^T \right)}_{\text{antisymmetric}} + \underbrace{\frac{1}{2} \left(M + M^T \right)}_{\text{symmetric}}$

 $\begin{array}{l} \textbf{Gram-Schmidt} \ \ \text{Given vectors} \ \{u_1, u_2, ..., u_n\}, \ \text{do:} \\ u_1 := u_1 / ||u_1|| \\ u_2 := u_2 - (u_2 \cdot u_1) u_1 \\ u_2 := u_2 / ||u_2|| \\ u_3 := u_3 - (u_3 \cdot u_1) u_1 - (u_3 \cdot u_2) u_2 \\ u_3 := u_3 / ||u_3|| \\ u_n := u_n - \sum_i (u_n \cdot u_i) u_i \\ \text{To create a set in } \mathbb{R}^n, \ \text{start with } u_1 \ \text{and require the set of } \end{array}$

To create a set in \mathbb{R}^n , start with u_1 and require that u_i be orthogonal to all previous by solving system with (i-1) unknowns.

Navier-Stokes equations in polar coordinates

Gradient	The gradient is grad $\mathbf{v} = \frac{\partial \mathbf{v}}{\partial x_j} \otimes \mathbf{e}_j = \frac{\partial (v_i \mathbf{e}_i)}{\partial x_j} \otimes \mathbf{e}_j$
Divergence	The divergence is div $\mathbf{v} = \frac{\partial \mathbf{v}}{\partial x_j} \cdot \mathbf{e}_j = \frac{\partial (v_i \mathbf{e}_i)}{\partial x_j} \cdot \mathbf{e}_j.$ Digergence of tensor div $\mathbf{T} = \frac{\partial \mathbf{T}}{\partial x_k} \cdot \mathbf{e}_k = \frac{\partial}{\partial x_k} \left[T_{ij} \left(\mathbf{e}_i \otimes \mathbf{e}_j \right) \right] \cdot \mathbf{e}_j.$
Tensor rule	$(a\otimes b)c=a(b\cdot c)$
Navier-Stokes	$ \rho \frac{D\mathbf{u}}{Dt} = \nabla \cdot \boldsymbol{\sigma} + \rho \mathbf{f} \Leftrightarrow m\mathbf{a} = \sum_i F_i $
Euler	$\rho_{Dt}^{\underline{D}\mathbf{u}} = \nabla \cdot -p\mathbf{I} \text{ (No viscosity)}$
Material derivative	$rac{D}{Dt} \equiv rac{\partial}{\partial t} + \mathbf{u} \cdot abla$

Polar coordinates and solid-body rotation

Solid body rotation The solid body rotation is $v(r, \theta) = (v_r, v_\theta) = (0, \omega r)$ in polar coordinates and $v(x, y) = (v_x, v_y) = \omega(-y, x)$ in Cartesian

Lagrangian variables in two dimensions

Strain rate tensor Let **v** be a velocity field (deformation mapping), the strain rate tensor is: $d_{ij} = \frac{1}{2} (d_{i,j} + d_{j,i})$

Change of v

Ideal gas law

 \mathbf{e}_k

$$\nabla \mathbf{v} = \underbrace{\mathbf{d}}_{\text{strain rate}} + \underbrace{\mathbf{w}}_{\text{rotation}} = \underbrace{\mathbf{d}}_{\text{pure strain}} + \underbrace{\mathbf{d}}_{e}_{\text{expansion}} + \underbrace{\mathbf{w}}_{\text{rotation}}$$

where $\mathbf{d}_e = \frac{1}{3} \operatorname{tr} \mathbf{d}$ and $\mathbf{d}_f = (\mathbf{d} - \mathbf{d}_e)$.

Ideal gas computations

The ideal gas law is PV = nRT, where n is moles and R is a gas constant.

First law of thermodynamics	The 1st law is $dU = dq - dw$, where U is the internal
	energy of the fluid, q is heat into fluid and w is work
	onto environment.

Entropy	Entropy S is given by $dS = \frac{dq}{T}$
Exact differential	dQ is exact $\Leftrightarrow Q$ is a state function $\Leftrightarrow \oint dQ = 0$

Second law of thermodynamics

Carnot engine (1) Isothermal expansion, (2) Adiabatic expansion, (3) Isothermal compression, (4) Adiabatic expansion. *Isothermal* means constant temperature, *adiabatic* means no heat transfer.

Efficiency of CE Efficiency is given by
$$\eta = \frac{W_{out}}{Q_{in}} = 1 - \frac{T_L}{T_H}$$

Carnot theorem (1) Between T_H and T_L , no engine beats the efficiency of th CE. (2) Efficiency η of CE is only a function of T_H and T_L .

(2) Enclosely η of ΘE is only a function of Γ_H and Γ_L :

 $\label{eq:clausius postulate} {\bf Clausius \ postulate} \ {\bf Heat \ never \ flows \ from \ hot \ to \ cold \ without \ aid(work \ input).}$

One-dimensional models for an elastic beam

Strain ℓ is the length of the bar, u(x) is displacement

$$\varepsilon = \frac{\Delta \ell}{\ell_0} = \frac{\mathrm{d}u}{\mathrm{d}x}$$

Hookes law σ is stress, ε is strain, E is modulus of elasticity

 $\sigma=E\varepsilon$

Wave equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{\rho}{E} \frac{\partial^2 u}{\partial t^2}$$

(1) Between T_H and T_L , no engine beats the efficiency of the Stress and displacement in a beam with longitudinal loading

 $\mathbf{Strain} \ \mathrm{sdf}$

For general math, see [3]. For fluids, see [2]. For thermodynamics, see [4]. For solid mechanics, see [1].

References

- [1] LUBLINER, J., AND PAPADOPOULOS, P. Introduction to Solid Mechanics: An Integrated Approach. Springer New York: New York, NY, 2014.
- [2] PIJUSH K. KUNDU. Fluid mechanics, 5th ed. ed. Academic Press Elsevier, 2012.
- [3] TADMOR, E. B., MILLER, R. E., AND ELLIOTT, R. S. Continuum Mechanics and Thermodynamics: From Fundamental Concepts to Governing Equations. Cambridge University Press, Cambridge, 2011.
- [4] WALTER J. MOORE. *Physical chemistry*, 3rd ed. ed. Prentice-Hall chemistry series. Prentice-Hall, 1962.