MAT252 cheat sheet (continuum mechanics)

Spectral theorem

Summation $\quad b_{i}=\sum_{j} a_{i j} x_{j}=a_{i j} x_{j} \quad \operatorname{div}(\mathbf{v})=v_{i, i}=\frac{\partial v_{i}}{\partial x_{i}}=\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}+\ldots$
Symmetry \quad The matrix M is symmetric if $M^{T}=M$. If $M^{T}=-M$, the matrix is antisymmetric. Every matrix M can be expressed as:

$$
M=A+S=\underbrace{\frac{1}{2}\left(M-M^{T}\right)}_{\text {antisymmetric }}+\underbrace{\frac{1}{2}\left(M+M^{T}\right)}_{\text {symmetric }}
$$

Gram-Schmidt Given vectors $\left\{u_{1}, u_{2}, \ldots ., u_{n}\right\}$, do:

$$
\begin{aligned}
& u_{1}:=u_{1} /\left\|u_{1}\right\| \\
& u_{2}:=u_{2}-\left(u_{2} \cdot u_{1}\right) u_{1} \\
& u_{2}:=u_{2} /\left\|u_{2}\right\| \\
& u_{3}:=u_{3}-\left(u_{3} \cdot u_{1}\right) u_{1}-\left(u_{3} \cdot u_{2}\right) u_{2} \\
& u_{3}:=u_{3} /\left\|u_{3}\right\| \\
& u_{n}:=u_{n}-\sum_{i}\left(u_{n} \cdot u_{i}\right) u_{i}
\end{aligned}
$$

To create a set in \mathbb{R}^{n}, start with u_{1} and require that u_{i} be orthogonal to all previous by solving system with $(i-1)$ unknowns.

Navier-Stokes equations in polar coordinates

Gradient	The gradient is grad $\mathbf{v}=\frac{\partial \mathbf{v}}{\partial x_{j}} \otimes \mathbf{e}_{j}=\frac{\partial\left(v_{i} \mathbf{e}_{i}\right)}{\partial x_{j}} \otimes \mathbf{e}_{j}$
Divergence	The divergence is div $\mathbf{v}=\frac{\partial \mathbf{v}}{\partial x_{j}} \cdot \mathbf{e}_{j}=\frac{\partial\left(v_{i} \mathbf{e}_{i}\right)}{\partial x_{j}} \cdot \mathbf{e}_{j}$.
	Digergence of tensor div $\mathbf{T}=\frac{\partial \mathbf{T}}{\partial x_{k}} \cdot \mathbf{e}_{k}=\frac{\partial}{\partial x_{k}}\left[T_{i j}\left(\mathbf{e}_{i} \otimes \mathbf{e}_{j}\right)\right] \cdot \mathbf{e}_{k}$
Tensor rule	$(a \otimes b) c=a(b \cdot c)$
Navier-Stokes	$\rho \frac{D \mathbf{u}}{D t}=\nabla \cdot \boldsymbol{\sigma}+\rho \mathbf{f} \Leftrightarrow m \mathbf{a}=\sum_{i} F_{i}$
Euler	$\rho \frac{D \mathbf{u}}{D t}=\nabla \cdot-p \mathbf{I}$ (No viscosity)
Material derivative	$\frac{D}{D t} \equiv \frac{\partial}{\partial t}+\mathbf{u} \cdot \nabla$

Polar coordinates and solid-body rotation
Solid body rotation The solid body rotation is $v(r, \theta)=\left(v_{r}, v_{\theta}\right)=(0, \omega r)$ in polar coordinates and $v(x, y)=\left(v_{x}, v_{y}\right)=\omega(-y, x)$ in Cartesian

Lagrangian variables in two dimensions

Strain rate tensor Let \mathbf{v} be a velocity field (deformation mapping), the strain rate tensor is: $d_{i j}=\frac{1}{2}\left(d_{i, j}+d_{j, i}\right)$
Change of v

$$
\nabla \mathbf{v}=\underbrace{\mathbf{d}}_{\text {strain rate }}+\underbrace{\mathbf{w}}_{\text {rotation }}=\underbrace{\mathbf{d}_{f}}_{\text {pure strain }}+\underbrace{\mathbf{d}_{e}}_{\text {expansion }}+\underbrace{\mathbf{w}}_{\text {rotation }}
$$

where $\mathbf{d}_{e}=\frac{1}{3} \operatorname{tr} \mathbf{d}$ and $\mathbf{d}_{f}=\left(\mathbf{d}-\mathbf{d}_{e}\right)$.

Ideal gas computations

Ideal gas law
The ideal gas law is $P V=n R T$, where n is moles and R is a gas constant.

First law of thermodynamics The 1st law is $d U=d q-d w$, where U is the internal energy of the fluid, q is heat into fluid and w is work onto environment.

Entropy
Exact differential

Entropy S is given by $d S=\frac{d q}{T}$
$d Q$ is exact $\Leftrightarrow Q$ is a state function $\Leftrightarrow \oint d Q=0$

Second law of thermodynamics

Carnot engine
(1) Isothermal expansion, (2) Adiabatic expansion, (3) Isothermal compression, (4) Adiabatic expansion. Isothermal means constant temperature, adiabatic means no heat transfer.

Efficiency of CE

$$
\text { Efficiency is given by } \eta=\frac{W_{o u t}}{Q_{i n}}=1-\frac{T_{L}}{T_{H}}
$$

Carnot theorem (1) Between T_{H} and T_{L}, no engine beats the efficiency of the CE.
(2) Efficiency η of CE is only a function of T_{H} and T_{L}.

Clausius postulate Heat never flows from hot to cold without aid(work input).

One-dimensional models for an elastic beam

Strain
ℓ is the length of the bar, $u(x)$ is displacement

$$
\varepsilon=\frac{\Delta \ell}{\ell_{0}}=\frac{\mathrm{d} u}{\mathrm{~d} x}
$$

Hookes law $\quad \sigma$ is stress, ε is strain, E is modulus of elasticity

$$
\sigma=E \varepsilon
$$

Wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\rho}{E} \frac{\partial^{2} u}{\partial t^{2}}
$$

Stress and displacement in a beam with longitudinal loading

Strain sdf

$\overline{\text { For general math, see [3]. For fluids, see [2]. For thermodynamics, see [4]. For solid mechanics, }}$ see [1].

References

[1] Lubliner, J., and Papadopoulos, P. Introduction to Solid Mechanics: An Integrated Approach. Springer New York: New York, NY, 2014.
[2] Piuush K. Kundu. Fluid mechanics, 5th ed. ed. Academic Press Elsevier, 2012.
[3] Tadmor, E. B., Miller, R. E., and Elliott, R. S. Continuum Mechanics and Thermodynamics: From Fundamental Concepts to Governing Equations. Cambridge University Press, Cambridge, 2011.
[4] Walter J. Moore. Physical chemistry, 3rd ed. ed. Prentice-Hall chemistry series. Prentice-Hall, 1962.

