\triangleright General mechanics

Degrees of freedom minimum number of independent generalized coordinates needed to describe system.

Variables

	Translation	Rotation
Momentum	$P=m v$	$L=r \times m v=I \dot{\omega}$
Δ Mom.	$F=m a$	$N=r \times F$
Energy	$T=\frac{1}{2} m v^{2}$	$T=\frac{1}{2} I \dot{\omega}^{2}$

Inertia w.r.t axis If r is the perpendicular distance from x, then

$$
I_{x}=\sum_{m_{i} \in \mathcal{B}} r^{2} m_{i}=\int_{\mathcal{B}} r^{2} d m
$$

Parallel axis thm If we know I_{x}, and r is the distance between I_{x} and $I_{x^{\prime}}$, then:

$$
I_{x^{\prime}}=I_{x}+m r^{2}
$$

Conserved quantities (1) Energy, (2) linear momentum and (3) angular momentum.

Lagrangian mechanics

Hamilton's principle The true evolution of a system is the path that minimizes

$$
I=\int_{a}^{b} L(q(t), \dot{q}(t), t) d t
$$

and I is minimized when $\delta I=0$. A necessary condition is that the EL eqns are satisfied.
The Lagrangian The Lagrangian is given by:

$$
L=T-V
$$

where T is kinetic energy and V is potential energy. It is useful to note that:

$$
T_{\text {total }}=T_{\text {translation }}+T_{\text {rotation }}
$$

Cyclic variables A variable q is cyclic if $\partial L / \partial q=0$. In other words $L \neq L(q)$ and q is a conserved quantity. Typical in systems with rotational invariance.

Euler-Lagrange eqns

$$
\left(\frac{\partial L}{\partial q_{i}}\right)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)=0 \quad, \forall \text { variables } q_{i}
$$

Lagrange multiplier method Instead of reducing number of generalized coordinates, use the constraint $f\left(q_{i}, t\right)=C$ to set up

$$
L \mapsto L^{\prime}=L+\lambda \underbrace{\left(f\left(q_{i}, t\right)-C\right)}_{\text {constraint }}
$$

The constraint force is $F_{i}=\frac{\partial \lambda f\left(q_{i}, t\right)}{\partial q_{i}}$

Hamiltonian mechanics

Canonical variables Let $H(q, p)$ be the Hamiltonian, then

$$
\begin{equation*}
\dot{p}_{i}=-\frac{\partial H}{\partial q_{i}} \quad \dot{q}_{i}=\frac{\partial H}{\partial p_{i}} \tag{1}
\end{equation*}
$$

(q, p) are the canonical variables, and any transformation preserving eqn (1) is canonical.

Hamiltonian from Lagrangian Compute canonical momenta

$$
p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}
$$

and use $H=\sum_{i} \dot{q}_{i} p_{i}-L$, eliminate \dot{q}_{i} from equation so that $H=H(q, p)$.
Legrende transform The transformation $L(q, \dot{q}) \mapsto H(q, p)$ is a Legrende transform. For $f(x)$, the Legrende transform is:

$$
f^{*}\left(x^{*}\right)=\sup _{x}\left(x^{*} x-f(x)\right)
$$

\triangleright Numerical methods

Symplecticity A method $y^{i+1}=\Phi_{h}\left(y^{i}\right)$ is symplectic iff $J=M J M^{T}$, where J is the canonical symplectic matrix $\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)$ and $M=\partial \Phi_{h}\left(y^{i}\right) / \partial y^{i}$.
Canonical transformation A change of variables $(q, p) \mapsto(Q, P)$ is symplectic if $J=M J M^{T}$, where $M=\partial($ new $) / \partial($ old $)=\partial Q_{i} / \partial q_{i}$. A trick if the variable change is difficult is to express the equation as $A M=B$ and transform to $M=A^{-1} B$.

$$
H(q(Q, P), p(Q, P))=K(Q, P)
$$

Numerical methods cont.

Linearization Assume that we have $\dot{\mathbf{x}}=f(\mathbf{x})$. To examine around a stationary point \mathbf{x}_{0}, write $\mathbf{x}=\mathbf{x}_{0}+\Delta \mathbf{x}$. Then $\dot{\mathbf{x}}=f\left(\mathbf{x}_{0}+\Delta \mathbf{x}\right) \approx f\left(\mathbf{x}_{0}\right)$ and

$$
\dot{\mathbf{x}}=\mathbf{J}\left(\mathrm{x}_{0}\right) \Delta \mathrm{x}=\mathbf{J}\left(\mathrm{x}_{0}\right) \Delta \mathrm{x}
$$

Examine the eigenvalues and eigenvectors of $\mathbf{J}\left(\mathbf{x}_{0}\right) \Delta$ to see the behavior of the system.
Discrete Euler-Lagrange eqns We minimize

$$
\sum_{i=1}^{M-1}\left[\partial_{1} L\left(q^{i}, q^{i+1}\right)+\partial_{2} L\left(q^{i-1}, q^{i}\right)\right] \delta q^{i}
$$

by requiring that

$$
\partial_{1} L\left(q^{i}, q^{i+1}\right)+\partial_{2} L\left(q^{i-1}, q^{i}\right)=0
$$

Construct discrete Lagrangian L_{D} like so

$$
L_{D}=h\left[T\left(\frac{q_{i+1}-q_{i}}{h}\right)-V\left(q_{i}\right)\right]
$$

An important check When solving problems related to numerics, remember to check behavior as $h \rightarrow 0$. It should look like the continuous case.

