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GENERAL NOTES

BPreliminaries

• The general framework for ODEs is

ẋ = f(x), x(0) = x0.

– Time is just a variable xi, and higher-order
derivatives can be reduced to first order deriva-
tives by introducing new variables.

– A well posed problem has a unique solution with
continuous dependence on the initial conditions.

– If f is continuous and all its partial derivatives
are continuous, a unique solution exists.

• A function satisfies a Lipschitz condition if there
exists an A such that |f(x2)−f(x1)| ≤ A|x2−x1|.
If f ′(x) is limited, such an A exists. If this condi-
tion is satisfied, a unique solution exists.

– Continuous derivative implies Lipschitz, but not
vice-versa.

• Since explicit solutions are difficult to produce and
hard to interpret, the common procedure of anal-
ysis is instead the following:

System→ Trajectories→ Solution info

• Flows on the line are governed by ẋ = f(x), i.e.
one dimensional maps.

• A fixed point x∗ is a point such that f(x∗) = 0.

• The logistics equation is given by Ṅ =
rN (1−N/K), where r > 0 is a growth rate and
K is a carrying limit. The solution is N(t) =

K
(
1 + e−kt

)−1
, and the behavior can be deduced

from looking at the fixed points f(N∗) = 0.

• The idea of linear stability analysis is to lin-
earize around a fixed point x∗. Introducing η(t) =
x(t)− x∗ implies ẋ = η̇, and we obtain

η̇ = ẋ = f (x∗ + η) ≈ ηf ′(x∗),

and f ′(x∗) (or F ′(x∗)) determines the linearized
behavior around x∗.

• Potentials can be used to infer behavior from the
system. The potential V (x) is defined as

f(x) = −dV
dx

,

and we have

V (x∗) = min ⇒ x∗ is stable,

V (x∗) = max ⇒ x∗ is unstable.

• Picard iteration
Given ẋ = f(x) and x(t0) = x0, we estimate the
solution in the vicinity of x0 by a sequence of ap-
proximations:

x0 = x0

x1 = x0 +

∫ t

t0

f(x0)dt

x2 = x0 +

∫ t

t0

f(x1)dt

... =
...

xn = x0 +

∫ t

t0

f(xn−1)dt

BBifurcations

• A bifurcation is a qualitative change in behavior.

• Normal forms of the most common bifurcations:

– Saddle node

ẋ = r + x2

– Transcritical

ẋ = rx− x2

– Pitchfork

ẋ = rx− x3

– Subcritical pitch-
fork

ẋ = rx+ x3

• The purpose of dimensional analysis is to write
an equation in dimensionless form. Two advan-
tages are (1) “small” can be defined as � 1 and
(2) the number of parameters are reduced by in-
troducing dimensionless groups.

– How to non-dimensionalize: (1) set a new time
scale τ = t/T and a new dependent variable
N = x/a, (2) find the derivatives with respect to
τ , (3) make every term non-dimensional and (4)
put the unknowns into non-dimensional groups.

BLinear systems

• A linear system is of the form

ẋ = Ax, A ∈ R2×2.

• The eigenvalues of A determine the behavior in the
phase plane, since the general solution is

x(t) = C1e
λ1tv1 + C2e

λ2tv2

• In general: nodes, saddles and spirals can occur.



• A rough sketch is:1

– real(λ) > 0 implies growth.

– real(λ) < 0 implies decay .

– imag(λ) 6= 0 implies a spiral/center.

– If λ1 = λ2 we have a star or degenerate node, de-
pending on the number of eigenvectors. If λi = 0
we have a non-isolated fixed point.

BPhase plane (R2)

• A good website for plotting phase planes is http:

//comp.uark.edu/~aeb019/pplane.html.

• Quantitative behavior with exact formulas is often
unattainable, so we settle for qualitative behavior.

• Nullclines are curves where either ẋ = 0 or ẏ = 0.

• Linearizing around f(x) = 0 gives correct informa-
tion unless Re(λi) = 0 for some i in the Jacobian
matrix of the linearization. If Re(λi) = 0 the point
is “fragile”—linearizing does not always give the
correct answer.

• The basin of attraction for a point x∗ is the sub-
set of the phase plane which sends all trajectories
to x∗.

• Stability

– Poincare stability (stability of path)
Let H∗ be the half path for the solution x∗(t).
Then H∗ is Poincare stable iff for every ε > 0
there exists a δ(ε) > 0 such that

||x(t0)− x∗(t0)|| < δ ⇒ max
x

dist(H∗,H) < ε

where x(t) is a neighboring solution with path
H.

– Liapunov stability (stability of solution)
The solution x∗(t) is Liapunov stable for t ≥ t0
iff for every ε > 0 there exists a δ(t, ε) > 0 such
that

||x(t0)− x∗(t0)|| < δ ⇒ ||x(t)− x∗(t)|| < ε

for all t ≥ t0, where x(t) is any neighboring so-
lution.

– Uniform stability (stability for all t)
If a solution x∗(t) is stable and δ if the definition
of Liapunov stability is independent of t0 then
x∗(t) is uniformly stable. I.e. the path is always
close to neighboring paths for every t0.

– Asymptotic stability (stability in the limit)
If x∗(t) is a stable solution, and in addition there
exists a δ(t0) > 0 such that

||x(t0)− x∗(t0)|| < δ ⇒ lim
t→∞
||x(t)− x∗(t)|| = 0

then x∗(t) is asymptotically stable. x(t) is a
neighboring solution.

• A conserved quantity is a real valued, non-zero,
continuous function E(x) such that Ė(x) = 0. The
quantity E(x) is conserved along trajectories.

– A conservative system cannot have any attract-
ing fixed points.

– If a point x is a local minimum for E(x), then x
is a (perhaps non-linear) center.

• A Hamiltonian system has

ẋ =
∂H

∂y
ẏ = −∂H

∂x
,

where H(x, y) is the Hamiltonian. H(x, y) is con-
stant along solution paths, since Ḣ(x, y) = 0.

• A system is reversible if it’s invariant under a
change of variables x 7→ R(x), t 7→ −t.
– One common mapping is y 7→ −y, t 7→ t. (Re-

flection over x-axis.)

• The index of a curve C is how many coun-
terclockwise rotations the vector f(x) makes as
x moves in a counterclockwise closed trajectory
around C once.

IC =
1

2π
[φ]C

Colloquially, IC measures the “winding” of f(x)
along the curve C.

– As long as a continuous deformation C 7→ C ′

does not cross through a fixed point, the index
is the same, i.e. IC = IC′ .

– If C does not enclose fixed points, IC = 0.

– For a saddle, Ix = −1. For other types of fixed
points Ix = +1.

– If IC encloses fixed points x∗1,x
∗
2, . . . ,x

∗
n then

IC =

n∑
i=1

Ii

BAsymptotics

• Big O and little o

– f(x) = O(g(x)) if limx→x0 f(x)/g(x) < ∞, in
terms of order f(x) ≤ g(x) as x→ x0.

– f(x) = o(g(x)) if limx→x0 f(x)/g(x) = 0, in
terms of order f(x) < g(x) as x→ x0.

• An asymptotic sequence of functions {φn} has
φn+1(x) = o (φn(x)) as x→ x0.

• An asymptotic series is of the form

f(x; ε) ∼
n∑
k=0

ak(x)φk(ε), ε→ ε0.

The coefficients are calculated using

an(x) = lim
ε→ε0

f(x; ε)−
∑n−1

k=0 ak(x)φk(ε)

φn(x)
.

1A dynamic website on linear systems: http://mathlets.org/mathlets/linear-phase-portraits-matrix-entry/

http://comp.uark.edu/~aeb019/pplane.html
http://comp.uark.edu/~aeb019/pplane.html
http://mathlets.org/mathlets/linear-phase-portraits-matrix-entry/


• An asymptotic expansion does not have to con-
verge to be useful: as n→∞ for a fixed ε it does
not have to converge for all x, but for a fixed N it
should converge as ε→ ε0 for all x.

• A sequence becomes non-uniform when φn does
not dominate φn+1, i.e. when two adjacent terms
are of the same order. The region of non-
uniformity for 1 + εx+ ε2x2 + . . . is x = O(1/ε).

• Non-uniformity arises from:

– Infinite domains, due to secular terms.

– ε in front of highest derivative.

• Optimal truncation: truncate in front of small-
est term of the asymptotic expansion.

BLimit cycles(closed orbits)

• Ruling out closed orbits

– If ẋ = −∇V (gradient system) there are no
closed orbits.

– If there exists a Liapunov function there is no
closed orbit. A Liapunov function has:

i. V (x) > 0 for all x 6= x∗(pos.def).

ii. V̇ (x) < 0 for all x (downhill flow).

And V (x) must be continuously differentiable,
i.e. continuous and continuous first derivatives.

– Dulac’s criterion states that if ∇·(gẋ) has one
sign in Ω there are no closed orbits in Ω, where
g is a scalar function. This is from the div. thm:∫∫

∇ · F dA =

∮
F · n̂ dr

Some choices for g are 1, 1/(xayb), eax and eby.

– Bendixson’s negative criterion is Dulac’s cri-
terion with g = 1.

• Finding closed orbits

– The Poincaré-Bendixson theorem states
that if one can construct a trapping region then
Ω must have a limit cycle if Ω has no fixed points.

Ω

• Relaxation oscillations operate on two time
scales: a slow buildup and a fast release.

• The general weakly non-linear equation is

ẍ+ ω2
0x = εF (x, ẋ),

and a specific example is the Duffing equation
ẍ+ x+ εx3 = 0.

• Regular perturbation theory consists of writ-
ing the solution as

x(t, ε) = x0(t) + εx1(t) + ε2x2(t) +O(ε3).

BBoundary layers

• Boundary layers arise when ε is in front of the high-
est order derivative, this causes a singularity.

BDiscrete maps and fractals

• A fixed point x∗ = f(x∗) has the following stability
properties:

– |f ′(x∗)| < 1⇒ Stable

– |f ′(x∗)| > 1⇒ Unstable

– |f ′(x∗)| = 1⇒ Linear analysis inconclusive

• Cobwebs can be used to picture iterated maps.

• The logistics map xn+1 = rxn(1 − xn) exhibits
chaos when r ≈ 3.5699.

• The similarity dimension of an object/fractal is

D =
ln(m)

ln(r)
,

where r is the shrinking factor and m is the number
of boxes needed to cover the object.

• The box dimension is

D = lim
ε→0

ln (N(ε))

ln (1/ε)
,

where N(ε) is the number of boxes of side length
ε needed to cover the object.

– The Cantor set has dimension D = ln(2)/ ln(3).

BChaos, attractors and Liapunov

• Chaos is aperiodic behavior in a deterministic sys-
tem with sensitive dependence on the initial con-
ditions.

• An attractor is a closed set A with the following
properties:
(a) All trajectories starting in A stay in A.

(b) A attracts and open set of initial conditions.

(c) A is minimal with respect to these properties.
• Assume that we have two solution trajectories x(t)

and x(t) + δ(t), then ||δ(x)|| ∼ ||δ0||eλt, where λ is
the Liapunov exponent. If λ > 1 there is sensi-
tive dependence of the initial conditions.



RECIPES (TECHNIQUES)

BRecipe: Strained coordinates

When to use: When straight forward Poincare ex-
pansion fails due to non-uniformities. Does not work if
amplitude needs to be adjusted.

1. Introduce τ = t(1 + εw1 + ε2w2 + . . . )

2. Compute derivatives.

3. Insert into equation, collect terms.

4. Use freedom in w1 to cancel terms giving rise to
secular terms, i.e. terms that grow boundlessly as
t→∞.

BRecipe: Multiscale

When to use: When straight forward Poincare ex-
pansion fails due to non-uniformities. Has the power
to change amplitude and frequency.

1. Construct a fast time T0 = t and a slow time
T1 = εt. Functions of the slow time T1 will be
regarded as constant on the fast time scale T0.
We have

x(t, ε) = x0(T0, T1) + εx1(T0, T1) +O(ε2)

and the time derivative becomes

ẋ =
dx

dt
=

∂x

∂T0
+ ε

∂x

∂T1
.

2. Plug the series expansion into the equation, col-
lect powers of ε. A typical solution for O(1) is
A(T1)e

iT0 +A∗(T1)e
−iT0 .

3. Plug into O(ε), get differential equation for A(T1)
by setting resonant terms to zero.

4. Use A(T1) := R(T1)e
iθ(T1) to get differential equa-

tions for R(T1) and θ(T1).

5. Use initial conditions and solve.

BRecipe: Averaging

When to use: in weakly non-linear oscillators, exem-
plified by ü+ ω2

0u = εF (u, u̇).
1. The unperturbed problem has solution u(t) =
a cos(ω0t + θ). Assume the solution is u(t) =

a(t) cos(ω0t + θ(t)), where ω0 is found in the un-
perturbed problem.

2. Assume that u̇(t) = −ω0a sin(ω0t + θ). Compare
with u̇(t)true to obtain one constraint. Compute
d
dt (u̇(t)ass) and plug into the problem to obtain
second constraint.

3. Obtain differential equations for a(t) and θ(t) from
the above constraints.

4. Averaging the RHS of the differential equations
give the averaging method.

BRecipe: Boundary layers

When to use: Boundary value problems with ε in
front of highest derivative.

1. Determine location of the boundary layer, deter-
mined by a(x) in

εf ′′ + a(x)f ′ + b(x)f = c(x), x1 < x < x2.

(a) If a(x) > 0, then the BL is at x = x1.

(b) If a(x) < 0, then the BL is at x = x2.

(c) If a(x) changes sign, then the BL is at a(x) = 0.

2. Choose s = ±(x − xi)/εp near the BL. Choose p
so as to keep as many terms as possible.

3. Use the Prandtl matching condition (here
with BL at x1)

lim
s→∞

f inner0 = lim
x→x0

fouter0

to determine coefficients, the limit is also fmatch
0 .

4. The solution becomes

f ∼ f inner0 + fouter0 − fmatch
0 .
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