Non-linear differential equations – Tommy Odland – Last edit: June 6, 2017

GENERAL NOTES

▷Preliminaries

• The general framework for ODEs is

$$\dot{\mathbf{x}} = f(\mathbf{x}), \quad \mathbf{x}(0) = \mathbf{x}_0$$

- Time is just a variable x_i , and higher-order derivatives can be reduced to first order derivatives by introducing new variables.
- A well posed problem has a unique solution with continuous dependence on the initial conditions.
- If f is continuous and all its partial derivatives are continuous, a unique solution exists.
- A function satisfies a Lipschitz condition if there exists an A such that |f(x₂) − f(x₁)| ≤ A|x₂ − x₁|. If f'(x) is limited, such an A exists. If this condition is satisfied, a unique solution exists.
 - Continuous derivative implies Lipschitz, but not vice-versa.
- Since explicit solutions are difficult to produce and hard to interpret, the common procedure of analysis is instead the following:

 $System \rightarrow Trajectories \rightarrow Solution \ info$

- Flows on the line are governed by $\dot{x} = f(x)$, i.e. one dimensional maps.
- A fixed point \mathbf{x}^* is a point such that $f(\mathbf{x}^*) = 0$.
- The logistics equation is given by $\dot{N} = rN(1 N/K)$, where r > 0 is a growth rate and K is a carrying limit. The solution is $N(t) = K(1 + e^{-kt})^{-1}$, and the behavior can be deduced from looking at the fixed points $f(N^*) = 0$.
- The idea of **linear stability analysis** is to linearize around a fixed point x^* . Introducing $\eta(t) = x(t) - x^*$ implies $\dot{x} = \dot{\eta}$, and we obtain

$$\dot{\eta} = \dot{x} = f\left(x^* + \eta\right) \approx \eta f'(x^*),$$

and $f'(x^*)$ (or $F'(x^*)$) determines the linearized behavior around x^* .

• **Potentials** can be used to infer behavior from the system. The potential V(x) is defined as

$$f(x) = -\frac{dV}{dx}$$

and we have

$$V(x^*) = \min \implies x^* \text{ is stable},$$

 $V(x^*) = \max \implies x^* \text{ is unstable}.$

• Picard iteration

Given $\dot{x} = f(x)$ and $x(t_0) = x_0$, we estimate the solution in the vicinity of x_0 by a sequence of approximations:

$$x_0 = x_0$$

$$x_1 = x_0 + \int_{t_0}^t f(x_0)dt$$

$$x_2 = x_0 + \int_{t_0}^t f(x_1)dt$$

$$\vdots = \vdots$$

$$x_n = x_0 + \int_{t_0}^t f(x_{n-1})dt$$

⊳Bifurcations

- A **bifurcation** is a qualitative change in behavior.
- Normal forms of the most common bifurcations:

– Saddle node	– Pitchfork
$\dot{x} = r + x^2$	$\dot{x} = rx - x^3$
– Transcritical	 Subcritical pitch- fork

- $\dot{x} = rx x^2 \qquad \qquad \dot{x} = rx + x^3$
- The purpose of **dimensional analysis** is to write an equation in dimensionless form. Two advantages are (1) "small" can be defined as $\ll 1$ and (2) the number of parameters are reduced by introducing dimensionless groups.
 - How to non-dimensionalize: (1) set a new time scale $\tau = t/T$ and a new dependent variable N = x/a, (2) find the derivatives with respect to τ , (3) make every term non-dimensional and (4) put the unknowns into non-dimensional groups.

⊳Linear systems

• A linear system is of the form

$$\dot{\mathbf{x}} = A\mathbf{x}, \quad A \in \mathbb{R}^{2 \times 2}.$$

• The eigenvalues of A determine the behavior in the phase plane, since the general solution is

$$\mathbf{x}(t) = C_1 e^{\lambda_1 t} \mathbf{v}_1 + C_2 e^{\lambda_2 t} \mathbf{v}_2$$

• In general: nodes, saddles and spirals can occur.

- A rough sketch is:¹
 - real $(\lambda) > 0$ implies growth.
 - real $(\lambda) < 0$ implies decay .
 - $\operatorname{imag}(\lambda) \neq 0$ implies a spiral/center.
 - If $\lambda_1 = \lambda_2$ we have a star or degenerate node, depending on the number of eigenvectors. If $\lambda_i = 0$ we have a non-isolated fixed point.

\triangleright Phase plane (\mathbb{R}^2)

- A good website for plotting phase planes is http: //comp.uark.edu/~aeb019/pplane.html.
- Quantitative behavior with exact formulas is often unattainable, so we settle for qualitative behavior.
- Nullclines are curves where either $\dot{x} = 0$ or $\dot{y} = 0$.
- Linearizing around $f(\mathbf{x}) = 0$ gives correct information unless $\operatorname{Re}(\lambda_i) = 0$ for some *i* in the Jacobian matrix of the linearization. If $\operatorname{Re}(\lambda_i) = 0$ the point is "fragile"—linearizing does not always give the correct answer.
- The **basin of attraction** for a point **x**^{*} is the subset of the phase plane which sends all trajectories to **x**^{*}.

• Stability

- **Poincare stability** (stability of path)

Let \mathcal{H}^* be the half path for the solution $x^*(t)$. Then \mathcal{H}^* is Poincare stable iff for every $\epsilon > 0$ there exists a $\delta(\epsilon) > 0$ such that

$$||x(t_0) - x^*(t_0)|| < \delta \Rightarrow \max_x \operatorname{dist}(\mathcal{H}^*, \mathcal{H}) < \epsilon$$

where x(t) is a neighboring solution with path \mathcal{H} .

- Liapunov stability (stability of solution)

The solution $x^*(t)$ is Liapunov stable for $t \ge t_0$ iff for every $\epsilon > 0$ there exists a $\delta(t, \epsilon) > 0$ such that

$$||x(t_0) - x^*(t_0)|| < \delta \Rightarrow ||x(t) - x^*(t)|| < \epsilon$$

for all $t \ge t_0$, where x(t) is any neighboring solution.

- **Uniform stability** (stability for all *t*)

If a solution $x^*(t)$ is stable and δ if the definition of Liapunov stability is independent of t_0 then $x^*(t)$ is uniformly stable. I.e. the path is always close to neighboring paths for every t_0 .

- Asymptotic stability (stability in the limit) If $x^*(t)$ is a stable solution, and in addition there exists a $\delta(t_0) > 0$ such that

$$||x(t_0) - x^*(t_0)|| < \delta \Rightarrow \lim_{t \to \infty} ||x(t) - x^*(t)|| = 0$$

then $x^*(t)$ is asymptotically stable. x(t) is a neighboring solution.

- A conserved quantity is a real valued, non-zero, continuous function $E(\mathbf{x})$ such that $\dot{E}(\mathbf{x}) = 0$. The quantity $E(\mathbf{x})$ is conserved along trajectories.
 - A conservative system cannot have any attracting fixed points.
 - If a point \mathbf{x} is a local minimum for $E(\mathbf{x})$, then \mathbf{x} is a (perhaps non-linear) center.
- A Hamiltonian system has

$$\dot{x} = \frac{\partial H}{\partial y} \quad \dot{y} = -\frac{\partial H}{\partial x},$$

where H(x, y) is the Hamiltonian. H(x, y) is constant along solution paths, since $\dot{H}(x, y) = 0$.

- A system is **reversible** if it's invariant under a change of variables $\mathbf{x} \mapsto R(\mathbf{x}), t \mapsto -t$.
 - One common mapping is $y \mapsto -y, t \mapsto t$. (Reflection over *x*-axis.)
- The index of a curve C is how many counterclockwise rotations the vector $f(\mathbf{x})$ makes as \mathbf{x} moves in a counterclockwise closed trajectory around C once.

$$I_C = \frac{1}{2\pi} \left[\phi\right]_C$$

Colloquially, I_C measures the "winding" of $f(\mathbf{x})$ along the curve C.

- As long as a continuous deformation $C \mapsto C'$ does not cross through a fixed point, the index is the same, i.e. $I_C = I_{C'}$.
- If C does not enclose fixed points, $I_C = 0$.
- For a saddle, $I_{\mathbf{x}} = -1$. For other types of fixed points $I_{\mathbf{x}} = +1$.
- If I_C encloses fixed points $\mathbf{x}_1^*, \mathbf{x}_2^*, \ldots, \mathbf{x}_n^*$ then

$$I_C = \sum_{i=1}^n I_i$$

⊳Asymptotics

- Big O and little o
 - -f(x) = O(g(x)) if $\lim_{x \to x_0} f(x)/g(x) < \infty$, in terms of order $f(x) \le g(x)$ as $x \to x_0$.
 - -f(x) = o(g(x)) if $\lim_{x \to x_0} f(x)/g(x) = 0$, in terms of order f(x) < g(x) as $x \to x_0$.
- An asymptotic sequence of functions $\{\phi_n\}$ has $\phi_{n+1}(x) = o(\phi_n(x))$ as $x \to x_0$.
- An **asymptotic series** is of the form

$$f(x;\epsilon) \sim \sum_{k=0}^{n} a_k(x)\phi_k(\epsilon), \quad \epsilon \to \epsilon_0.$$

The coefficients are calculated using

$$a_n(x) = \lim_{\epsilon \to \epsilon_0} \frac{f(x;\epsilon) - \sum_{k=0}^{n-1} a_k(x)\phi_k(\epsilon)}{\phi_n(x)}.$$

¹A dynamic website on linear systems: http://mathlets.org/mathlets/linear-phase-portraits-matrix-entry/

- An asymptotic expansion **does not have to converge** to be useful: as $n \to \infty$ for a fixed ϵ it does not have to converge for all x, but for a fixed N it should converge as $\epsilon \to \epsilon_0$ for all x.
- A sequence becomes **non-uniform** when ϕ_n does not dominate ϕ_{n+1} , i.e. when two adjacent terms are of the same order. The region of nonuniformity for $1 + \epsilon x + \epsilon^2 x^2 + \dots$ is $x = O(1/\epsilon)$.
- Non-uniformity arises from:
 - Infinite domains, due to secular terms.
 - ϵ in front of highest derivative.
- **Optimal truncation**: truncate in front of smallest term of the asymptotic expansion.

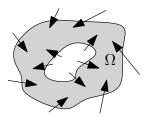
⊳Limit cycles(closed orbits)

- Ruling out closed orbits
 - If $\dot{\mathbf{x}} = -\nabla V$ (gradient system) there are no closed orbits.
 - If there exists a Liapunov function there is no closed orbit. A Liapunov function has:
 - i. $V(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{x}^*$ (pos.def).
 - ii. $\dot{V}(\mathbf{x}) < 0$ for all \mathbf{x} (downhill flow). And $V(\mathbf{x})$ must be continuously differentiable, i.e. continuous and continuous first derivatives.
 - **Dulac's criterion** states that if $\nabla \cdot (g\dot{\mathbf{x}})$ has one sign in Ω there are no closed orbits in Ω , where g is a scalar function. This is from the div. thm:

$$\iint \nabla \cdot \mathbf{F} \, dA = \oint \mathbf{F} \cdot \hat{\mathbf{n}} \, dr$$

Some choices for g are $1, 1/(x^a y^b)$, e^{ax} and e^{by} .

- Bendixson's negative criterion is Dulac's criterion with g = 1.
- Finding closed orbits
 - The **Poincaré-Bendixson theorem** states that if one can construct a trapping region then Ω must have a limit cycle if Ω has no fixed points.



- **Relaxation oscillations** operate on two time scales: a slow buildup and a fast release.
- The general weakly non-linear equation is

$$\ddot{x} + \omega_0^2 x = \epsilon F(x, \dot{x})$$

and a specific example is the Duffing equation $\ddot{x} + x + \epsilon x^3 = 0.$

• **Regular perturbation theory** consists of writing the solution as

$$x(t,\epsilon) = x_0(t) + \epsilon x_1(t) + \epsilon^2 x_2(t) + O(\epsilon^3).$$

⊳Boundary layers

• Boundary layers arise when ϵ is in front of the highest order derivative, this causes a singularity.

\triangleright Discrete maps and fractals

• A fixed point $x^* = f(x^*)$ has the following stability properties:

$$|f'(x^*)| < 1 \Rightarrow$$
 Stable

$$|f'(x^*)| > 1 \Rightarrow$$
 Unstable

- $|f'(x^*)| = 1 \Rightarrow$ Linear analysis inconclusive
- Cobwebs can be used to picture iterated maps.
- The logistics map $x_{n+1} = rx_n(1 x_n)$ exhibits chaos when $r \approx 3.5699$.
- The **similarity dimension** of an object/fractal is

$$D = \frac{\ln(m)}{\ln(r)}$$

where r is the shrinking factor and m is the number of boxes needed to cover the object.

• The **box dimension** is

$$D = \lim_{\epsilon \to 0} \frac{\ln (N(\epsilon))}{\ln (1/\epsilon)},$$

where $N(\epsilon)$ is the number of boxes of side length ϵ needed to cover the object.

- The Cantor set has dimension $D = \ln(2) / \ln(3)$.

⊳Chaos, attractors and Liapunov

- **Chaos** is aperiodic behavior in a deterministic system with sensitive dependence on the initial conditions.
- An **attractor** is a closed set A with the following properties:
 - (a) All trajectories starting in A stay in A.
 - (b) A attracts and open set of initial conditions.
 - (c) A is minimal with respect to these properties.
- Assume that we have two solution trajectories x(t)and $x(t) + \delta(t)$, then $||\delta(x)|| \sim ||\delta_0||e^{\lambda t}$, where λ is the **Liapunov exponent**. If $\lambda > 1$ there is sensitive dependence of the initial conditions.

RECIPES (TECHNIQUES)

▷Recipe: Strained coordinates

When to use: When straight forward Poincare expansion fails due to non-uniformities. Does not work if amplitude needs to be adjusted.

- 1. Introduce $\tau = t(1 + \epsilon w_1 + \epsilon^2 w_2 + \dots)$
- 2. Compute derivatives.
- 3. Insert into equation, collect terms.
- 4. Use freedom in w_1 to cancel terms giving rise to secular terms, i.e. terms that grow boundlessly as $t \to \infty$.

\triangleright Recipe: Multiscale

When to use: When straight forward Poincare expansion fails due to non-uniformities. Has the power to change amplitude and frequency.

1. Construct a fast time $T_0 = t$ and a slow time $T_1 = \epsilon t$. Functions of the slow time T_1 will be regarded as constant on the fast time scale T_0 . We have

$$x(t,\epsilon) = x_0(T_0, T_1) + \epsilon x_1(T_0, T_1) + O(\epsilon^2)$$

and the time derivative becomes

$$\dot{x} = \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\partial x}{\partial T_0} + \epsilon \frac{\partial x}{\partial T_1}$$

- 2. Plug the series expansion into the equation, collect powers of ϵ . A typical solution for O(1) is $A(T_1)e^{iT_0} + A^*(T_1)e^{-iT_0}$.
- 3. Plug into $O(\epsilon)$, get differential equation for $A(T_1)$ by setting resonant terms to zero.
- 4. Use $A(T_1) := R(T_1)e^{i\theta(T_1)}$ to get differential equations for $R(T_1)$ and $\theta(T_1)$.
- 5. Use initial conditions and solve.

▷Recipe: Averaging

When to use: in weakly non-linear oscillators, exemplified by $\ddot{u} + \omega_0^2 u = \epsilon F(u, \dot{u})$.

1. The unperturbed problem has solution $u(t) = a\cos(\omega_0 t + \theta)$. Assume the solution is u(t) =

 $a(t)\cos(\omega_0 t + \theta(t))$, where ω_0 is found in the unperturbed problem.

- 2. Assume that $\dot{u}(t) = -\omega_0 a \sin(\omega_0 t + \theta)$. Compare with $\dot{u}(t)_{\text{true}}$ to obtain one constraint. Compute $\frac{d}{dt} (\dot{u}(t)_{\text{ass}})$ and plug into the problem to obtain second constraint.
- 3. Obtain differential equations for a(t) and $\theta(t)$ from the above constraints.
- 4. Averaging the RHS of the differential equations give the averaging method.

▷Recipe: Boundary layers

When to use: Boundary value problems with ϵ in front of highest derivative.

1. Determine location of the boundary layer, determined by a(x) in

$$\epsilon f'' + a(x)f' + b(x)f = c(x), \quad x_1 < x < x_2.$$

- (a) If a(x) > 0, then the BL is at $x = x_1$.
- (b) If a(x) < 0, then the BL is at $x = x_2$.
- (c) If a(x) changes sign, then the BL is at a(x) = 0.
- 2. Choose $s = \pm (x x_i)/\epsilon^p$ near the BL. Choose p so as to keep as many terms as possible.
- 3. Use the **Prandtl matching condition** (here with BL at x_1)

$$\lim_{s \to \infty} f_0^{\text{inner}} = \lim_{x \to x_0} f_0^{\text{outer}}$$

to determine coefficients, the limit is also f_0^{match} .

4. The solution becomes

$$f \sim f_0^{\text{inner}} + f_0^{\text{outer}} - f_0^{\text{match}}.$$

⊳References

- Lecture notes.
- Steven H. Strogatz (Steven Henry). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Second edition. Westview Press, a member of the Perseus Books Group, 2015.
- Alan W. Bush. *Perturbation Methods for Engineers* and *Scientists*. CRC Press Library of Engineering Mathematics. Boca Raton, Fla: CRC Press, 1992.