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GENERAL NOTES

>Preliminaries

e The general framework for ODEs is

x = f(x),

x(0) = xo.

— Time is just a variable z;, and higher-order
derivatives can be reduced to first order deriva-
tives by introducing new variables.

— A well posed problem has a unique solution with
continuous dependence on the initial conditions.

— If f is continuous and all its partial derivatives
are continuous, a unique solution exists.

e A function satisfies a Lipschitz condition if there
exists an A such that |f(z2) — f(x1)| < Alzg — x1].
If f/(x) is limited, such an A exists. If this condi-
tion is satisfied, a unique solution exists.

— Continuous derivative implies Lipschitz, but not
vice-versa.

e Since explicit solutions are difficult to produce and
hard to interpret, the common procedure of anal-
ysis is instead the following:

System — Trajectories — Solution info

e Flows on the line are governed by & = f(z), i.e.
one dimensional maps.

e A fixed point x* is a point such that f(x*) = 0.

e The logistics equation is given by N =
rN (1 — N/K), where r > 0 is a growth rate and
K is a carrying limit. The solution is N(t) =
K (1 + e‘kt)fl, and the behavior can be deduced
from looking at the fixed points f(IN*) = 0.

e The idea of linear stability analysis is to lin-
earize around a fixed point z*. Introducing n(t) =
x(t) — «* implies & = 7, and we obtain

n=i=f(a"+n)=nf(z"),
and f/'(z*) (or F'(z*)) determines the linearized
behavior around z*.
e Potentials can be used to infer behavior from the

system. The potential V(z) is defined as

av

f(x) = Tz

and we have

V(z*) = min

V(z*) = max

= z* is stable,

= z* is unstable.

e Picard iteration
Given & = f(x) and z(t9) = o, we estimate the
solution in the vicinity of xg by a sequence of ap-
proximations:

o = X0

t
xr1 =T+ flxo)dt
to

t
xo =wx0+ [ f(x1)dt
to

t
Ty = X0 + f(.%nfl)dt

to

>Bifurcations

e A bifurcation is a qualitative change in behavior.

e Normal forms of the most common bifurcations:

— Saddle node — Pitchfork
: 2 i=rr—a°
r=r—+x
— Subcritical pitch-
— Transcritical fork
i =rx— i=rz+ a2

e The purpose of dimensional analysis is to write
an equation in dimensionless form. Two advan-
tages are (1) “small” can be defined as < 1 and
(2) the number of parameters are reduced by in-
troducing dimensionless groups.

— How to non-dimensionalize: (1) set a new time
scale 7 = t/T and a new dependent variable
N = z/a, (2) find the derivatives with respect to
7, (3) make every term non-dimensional and (4)
put the unknowns into non-dimensional groups.

>Linear systems

e A linear system is of the form
x = Ax, AeR¥>2

e The eigenvalues of A determine the behavior in the
phase plane, since the general solution is

x(t) = CreMtvy + Coe™?tvy

e In general: nodes, saddles and spirals can occur.



e A rough sketch is{l]

— real(\) > 0 implies growth.

— real(\) < 0 implies decay .

— imag(A) # 0 implies a spiral/center.

— If Ay = X9 we have a star or degenerate node, de-

pending on the number of eigenvectors. If \; =0
we have a non-isolated fixed point.

>Phase plane (R?)

e A good website for plotting phase planes is http:
//comp.uark.edu/~aeb019/pplane.html.

Quantitative behavior with exact formulas is often
unattainable, so we settle for qualitative behavior.

Nullclines are curves where either £ = 0 or y = 0.

Linearizing around f(x) = 0 gives correct informa-
tion unless Re(\;) = 0 for some ¢ in the Jacobian
matrix of the linearization. If Re(\;) = 0 the point
is “fragile”—linearizing does not always give the
correct answer.
The basin of attraction for a point x* is the sub-
set of the phase plane which sends all trajectories
to x*.
Stability
— Poincare stability (stability of path)
Let H* be the half path for the solution z*(t).
Then H* is Poincare stable iff for every ¢ > 0
there exists a d(e) > 0 such that

[|z(to) — x*(to)|| < 0 = maxdist(H*,H) < e

where x(t) is a neighboring solution with path

H.

— Liapunov stability (stability of solution)
The solution z*(t) is Liapunov stable for ¢ > ¢
iff for every e > 0 there exists a §(t,€) > 0 such
that

[z(to) — =" (to)[| < 8 = [lz(t) =27 (D)[| <€

for all t > to, where x(t) is any neighboring so-
lution.

— Uniform stability (stability for all t)
If a solution x*(t) is stable and ¢ if the definition
of Liapunov stability is independent of ty then
x*(t) is uniformly stable. L.e. the path is always
close to neighboring paths for every tg.

— Asymptotic stability (stability in the limit)
If 2*(t) is a stable solution, and in addition there
exists a 0(tg) > 0 such that

|z(to) — 2" (to)l| <0 = lim [fz(t) —27(#)[| =0

then x*(t) is asymptotically stable. z(t) is a
neighboring solution.

e A conserved quantity is a real valued, non-zero,

continuous function E(x) such that £(x) = 0. The
quantity E(x) is conserved along trajectories.

— A conservative system cannot have any attract-
ing fixed points.

— If a point x is a local minimum for F(x), then x
is a (perhaps non-linear) center.

A Hamiltonian system has

. O0H . OH
xr= — [ —
Oy Y
where H(z,y) is the Hamiltonian. H(z,y) is con-
stant along solution paths, since H(x,y) = 0.

A system is reversible if it’s invariant under a
change of variables x — R(x), t — —t.

— One common mapping is y — —y, t — t. (Re-

flection over z-axis.)

The index of a curve C' is how many coun-
terclockwise rotations the vector f(x) makes as
X moves in a counterclockwise closed trajectory
around C' once.

= 1o

Colloquially, Ic measures the “winding” of f(x)
along the curve C.

Ic

— As long as a continuous deformation C' +— C’
does not cross through a fixed point, the index
is the same, i.e. Io = I¢v.

— If C does not enclose fixed points, I = 0.

— For a saddle, Iy = —1. For other types of fixed
points Ix = +1.

— If Ic encloses fixed points x7,x3,...,x;, then

Ic = z": I;
i=1

> Asymptotics

e Big O and little o

= [(z) = O(g(z)) if limg f(z)/g9(x) < oo, in
terms of order f(x) < g(z) as © — xg.

= f(z) = o(g(z)) if limga, f(z)/g(x) = 0, in
terms of order f(x) < g(x) as x — xo.

e An asymptotic sequence of functions {¢,} has

bnt1 (@) = 0 (60 (@) as T — 0.

e An asymptotic series is of the form

fl@ie) ~ > ar(@)dn(e), €= e
k=0

The coefficients are calculated using

o (@) = lim L6 = i ax(@)dn(c)
" €E—€Q (Z)n(x) .

! A dynamic website on linear systems: http://mathlets.org/mathlets/linear-phase-portraits-matrix-entry/


http://comp.uark.edu/~aeb019/pplane.html
http://comp.uark.edu/~aeb019/pplane.html
http://mathlets.org/mathlets/linear-phase-portraits-matrix-entry/

e An asymptotic expansion does not have to con-
verge to be useful: as n — oo for a fixed € it does
not have to converge for all z, but for a fixed N it
should converge as € — ¢g for all x.

e A sequence becomes non-uniform when ¢,, does
not dominate ¢,1, i.e. when two adjacent terms
are of the same order. The region of non-
uniformity for 1 + ex + 222 + ... is x = O(1/e).

e Non-uniformity arises from:

— Infinite domains, due to secular terms.
— € in front of highest derivative.

e Optimal truncation: truncate in front of small-
est term of the asymptotic expansion.

>Limit cycles(closed orbits)

e Ruling out closed orbits

— If x = —VV (gradient system) there are no
closed orbits.

— If there exists a Liapunov function there is no
closed orbit. A Liapunov function has:
i. V(x) > 0 for all x # x*(pos.def).

ii. V(x) <0 for all x (downhill flow).

And V(x) must be continuously differentiable,

i.e. continuous and continuous first derivatives.
— Dulac’s criterion states that if V- (gx) has one

sign in §2 there are no closed orbits in €2, where

g is a scalar function. This is from the div. thm:

/ V-FdA—j{F-fldr

Some choices for g are 1,1/(z%"), e®® and .

— Bendixson’s negative criterion is Dulac’s cri-
terion with g = 1.

¢ Finding closed orbits

— The Poincaré-Bendixson theorem states
that if one can construct a trapping region then
Q must have a limit cycle if € has no fixed points.

e Relaxation oscillations operate on two time
scales: a slow buildup and a fast release.

e The general weakly non-linear equation is
i+ whr = eF(w, &),

and a specific example is the Duffing equation
i+z+ex®=0.

¢ Regular perturbation theory consists of writ-
ing the solution as

x(t,€) = xo(t) + exq(t) + xa(t) + O(e3).

>Boundary layers

e Boundary layers arise when € is in front of the high-
est order derivative, this causes a singularity.

>Discrete maps and fractals

e A fixed point z* = f(z*) has the following stability
properties:

— |f'(z*)] < 1 = Stable
~ |f'(z*)| > 1 = Unstable
— |f'(x*)| = 1 = Linear analysis inconclusive
e Cobwebs can be used to picture iterated maps.
e The logistics map x,4+1 = ra,(l — x,) exhibits
chaos when r =~ 3.5699.
e The similarity dimension of an object/fractal is
In(m)
" In(r)’

where 7 is the shrinking factor and m is the number
of boxes needed to cover the object.

e The box dimension is

)
D_lg% In(1/€)’

where N (¢€) is the number of boxes of side length
€ needed to cover the object.

— The Cantor set has dimension D = In(2)/In(3).

>>Chaos, attractors and Liapunov

e Chaos is aperiodic behavior in a deterministic sys-
tem with sensitive dependence on the initial con-
ditions.

e An attractor is a closed set A with the following
properties:
(a) All trajectories starting in A stay in A.
(b) A attracts and open set of initial conditions.

(c) A is minimal with respect to these properties.

e Assume that we have two solution trajectories x(t)
and x(t) + 6(t), then ||6(z)|| ~ ||0||e*, where A is
the Liapunov exponent. If A > 1 there is sensi-
tive dependence of the initial conditions.



RECIPES (TECHNIQUES)

>Recipe: Strained coordinates

When to use: When straight forward Poincare ex-
pansion fails due to non-uniformities. Does not work if
amplitude needs to be adjusted.

1.

Introduce 7 = (1 + ew; + 2wy + .. .)

2. Compute derivatives.
3.
4. Use freedom in w; to cancel terms giving rise to

Insert into equation, collect terms.

secular terms, i.e. terms that grow boundlessly as
t — oo.

>Recipe: Multiscale

When to use: When straight forward Poincare ex-
pansion fails due to non-uniformities. Has the power
to change amplitude and frequency.

1.

Construct a fast time Ty = t and a slow time
Ty = et. Functions of the slow time 77 will be
regarded as constant on the fast time scale Tj.
We have

x(t, €) = xo(Ty, Th) + ex1(Tp, T1) + O(€?)

and the time derivative becomes

dx ox ox

Plug the series expansion into the equation, col-
lect powers of €. A typical solution for O(1) is
A(Tl)eiTO + A* (Tl)eiiTO.

Plug into O(e), get differential equation for A(7T7)
by setting resonant terms to zero.

. Use A(Ty) := R(T1)e®™) to get differential equa-

tions for R(77) and 6(T7).

Use initial conditions and solve.

>Recipe: Averaging

When to use: in weakly non-linear oscillators, exem-
plified by i + wiu = eF(u, ).

1.

The unperturbed problem has solution u(t) =
acos(wot + 6). Assume the solution is u(t) =

a(t) cos(wot + O(t)), where wq is found in the un-
perturbed problem.

. Assume that u(t) = —wpasin(wot + #). Compare
with @(t)true to obtain one constraint. Compute
% (4(t)ass) and plug into the problem to obtain
second constraint.

. Obtain differential equations for a(t) and 6(t) from
the above constraints.

. Averaging the RHS of the differential equations
give the averaging method.

>Recipe: Boundary layers

When to use: Boundary value problems with € in
front of highest derivative.
1. Determine location of the boundary layer, deter-

mined by a(z) in

ef’ +a(x)f' +b(x)f = c(x),

1 <z <To.

(a) If a(z) > 0, then the BL is at = = x;.
(b) If a(x) < 0, then the BL is at x = x».
(c) If a(x) changes sign, then the BL is at a(x) = 0.

2. Choose s = £(x — z;)/eP near the BL. Choose p

so as to keep as many terms as possible.

3. Use the Prandtl matching condition (here

with BL at z7)

hm fénnor — hIIl f((])utor
5§—00 T—x0

to determine coefficients, the limit is also fiatch,

4. The solution becomes

inner outer _ pmatch
N [ o Jo™
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