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B Introduction

Nomenclature

Symbol Meaning

h Hypothesis (function)
H Hypothesis space (function space)
x Instance (data)
X Instance space (data space)
c Target concept (function)
∧ Conjunction
∨ Disjunction

A motivating example

Consider the following dataset:

# Age Hair Height Sex

1 27 long 162 F
2 32 short 181 M
3 15 short 175 M
...

...
...

...
...

• Attributes – Age , Hair and Height .

• Attributes have possible values that are categor-
ical, discrete or real. Here Age is discrete, Hair

is categorical and Height is real.

• The target attribute is Sex .

– If real/discrete target concept
→ Regression problem

– If categorical target concept
→ Classification problem

B Machine learning

• Inductive and deductive reasoning

– Inductive: Specific → general

– Deductive: General → specific

• Supervised learning – a learner is presented with
samples and the target value.

• Unsupervised learning – a learner is presented
with samples, but no target value.

• Inductive bias: the set of assumptions that the
learner uses to predict outputs given inputs that
it has not previously encountered.

• Inductive bias = restriction bias + preference
bias. Restriction bias is related to restrictions in
the hypothesis space, preference bias is related to
preferences in the hypothesis space.

• Good error functions are (1) differentiable (2) in-
crease monotonically on both sides. A good error
function is E(xi) = 1

2

∑
i(h(xi)− c(xi))2.

• Well posed problem consists of a task T , a per-
formance measure P and a training experience
E.

• Data preprocessing is very important in practice.
For algorithms such as neural networks and sup-
port vector machines, normalizing is crucial.

B Concept learning

• Concept learning: Inferring boolean valued tar-
get concept c.

• The find-s algorithm starts with most specific
hypothesis 〈∅, ∅, ...., ∅〉 and makes it more gen-
eral as data is encountered. Finds a maximally
specific hypothesis.

• The candidate elimination algorithm finds all
hypotheses consistent with the data by incre-
menting two boundaries Gi and Si as samples
are encountered.

• Both of the above algorithms perform poorly on
noisy data.

B Decision trees

Information theory

• Information entropy is defined as

E(S) := −
∑
c∈V

pc log2 pc

where c ∈ V are the categorical variables.

• Information entropy measures impurity, or un-
certainty. A coin toss has high entropy.

• The definition of information gain for A with re-
spect to S is:

Gain(S,A) := E(S)−
∑

v∈values(A)

|Sv|
|S|

E(Sv)

• Information gain is of little use when an attribute
has many distinct values. This problem is over-
come by normalizing Gain(S,A) by diving by
E(A). This normalizes with respect to the en-
tropy of the attribute A.

• Entropy may be interpreted as the expected num-
ber of bits to optimally encode elements uni-
formly draw from S for transmission.



Decision trees

• Attributes must be categorical. Explicitly mod-
els conditionality between variables.

• Less confidence as we go down, because decision
is made based on fewer samples.

• Appropriate classification problems have dis-
crete attribute values. Decision trees are robust
against noisy data. It may overfit, the overfitting
problem is mitigated by either (1) early stopping
or (2) post-pruning. Post-pruning is more suc-
cessful in practice.

• Reduced error pruning – iteratively remove nodes
in the tree if removal increases accuracy over val-
idation set. Stop when no nodes can be removed
without decreasing the accuracy.

• The inductive bias is a preference for short trees,
and trees which place high information gain at
the top of the tree. The ID3 algorithm is greedy,
and in general not optimal.

B Performance evaluation

• A confusion matrix is given below:
Predicted value

True value
T F

T TP FN
F FP TN

• The accuracy is TP + TN
TP + FN + FP + TN

• The sensitivity is TP
TP + FN (true positive)

• The specificity is TN
TN + FP (true negative)

• The precision is TP
TP + FP and the recall is TP

TP + FN

– The F-measure combines precision and re-
call.

• k-fold cross validation – Split the dataset into
k disjoint, equal sized sets, train and test on each
partition and average the results.

• errorS(h) (sample error) can be used to set up a
confidence interval for errorD(h) (true error).

B Bayesian learning

• Bayes theorem is

P (h|D) =
P (D|h)P (h)

P (D)

where P (h|D) is the posterior, P (D|h) is the like-
lihood and P (h) is the prior. h is a hypothesis
(e.g. “the email is SPAM”) and D is data (e.g.
“the words “sex” and “free” are in the email”).

• The maximum a posterior hypothesis is

hMAP = argmax
h∈H

P (h|D)

Note that hMAP does not always lead to the
“most probable classification.”

• The maximum likelihood hypothesis is

hML = argmax
h∈H

P (D|h)

• A consistent learner is one which commits no er-
rors over the training data.

• The minimum description length principle is a
formalization of Occam’s razor. Describe data
using the classifier and misclassifications requir-
ing the least bits to transfer.

Naive Bayes classifier

• The naive assumption is that attribute values are
conditionally independent (do not influence each
other), leading to

argmax P (vj |a1, a2, ..., an) = (Bayes thm)

argmax P (vj)P (a1, a2, ..., an|vj) ≈ (naivety)

argmax
vj∈V

P (vj)
∏
i

P (ai|vj)

• Classifies according to

vNB = argmax
v∈V

P (v)

n∏
i=1

P (ai|v)

where v ∈ V are the possibles values for the tar-
get attribute. Attributes must be categorical.

• A problem arises if P (ai|v) = 0 for some ai,
because 0’s influence classification too strongly.
Two solutions are

– Add artificial count of 1 (numerator and de-
nominator).

– Design a prior expectation using an m-
estimate, nc+mp

n+m , where n and nc are real
samples and m is a weight, p is a prior esti-
mate. The second term in the equation are
the virtual samples.



B Artificial Neural Networks

• Output of an artificial neuron is given by

y = f (Σiwixi)

where wi are weights and xi are inputs.

• Some activation functions f are (1) the thresh-
olded perceptron (step function), (2) the un-
thresholded perceptron (linear function), (3) the
sigmoid function and (4) the tanh (hyperbolic
tangent) function.

• The universal approximation theorem states that
with 1 hidden layer, any continuous function can
be approximated.

• Gradient descent algorithm for training

– Use the following error estimate

E(~w) =
1

2

∑
d∈D︸︷︷︸

All data

(td − od)2︸ ︷︷ ︸
True minus predicted

where od = f(~w · ~xd) and f ′ = (1− f)f if f
is the sigmoid.

– Gradient descent – Consider all d ∈ D be-
fore moving along error surface.

– Stochastic gradient descent – One training
sample d at a time.

– If f(x) = 1/(1 + e−x), then f ′(x) =
(1− f(x)) f(x). The update rules are ∆w =
−ε∂E∂w , e.g. negative of gradient. For output
neurons

∂E

∂wj
= (O − t) · f ′(o) ·Hj

and for hidden neurons (one hidden layer)

∂E

∂vjk
= (O − t) · f ′(o) · wj · g′(hj) · Ik

• To alleviate problems with local minima, one or
several of the following techniques may be ap-
plied: momentum term, stochastic gradient de-
scent, train several networks.

• Overfitting may be controlled by monitoring er-
ror with respect to test data. When error as a
function of model complexity on test data is min-
imal, the model is probably good.

• Strengths include extreme approximation power,
few prior assumptions. Weaknesses include over-
fitting, computational expense and interpretation
difficulties.

B Support Vector Machines

• Classification in feature space using hyperplanes.

• The optimization problem (for linearly separable
data) is

min
1

2
‖~w‖

s.t. yi (~wxi − b) ≥ 1 ∀ i

where ~w is a vector and b is a threshold.

• Advantages: easy training, no local optima,
scales well, different types of input works. Dis-
advantages: a good kernel is often needed.

B Reinforcement learning

• Autonomous agent vs. environment. Think
backgammon, pac-man, chess, robot, etc.

• Q(s, a) maps a state s and an action a to the
maximum cumulative reward.

• The maximum cumulative reward V is

V (st) :=
∞∑
i=0

γiri+1

where st is the state in which the first action is
performed, γ is a discount factor and ri+1 are the
rewards.

• Other sensible reward systems are finite horizon
rewards and average reward.



• The Q-learning equation is

π∗(s) = argmax
a

[r(s, a) + γV ∗ (δ(s, a))]

where the term inside the brackets is replaced
by Q(s, a). This allows us to learn the optimal
action policy π∗(s) without knowing r(s, a) and
δ(s, a) explicitly.

• The Q-learning algorithm is
(a) Select an action a, execute it

(b) Receive a reward r

(c) Observe a new state s′

(d) Update Q̂(s, a)← r + γmaxa′ Q̂(s′, a′)
• Experimentation can be added to avoid overcom-

mitting to early actions. Experimentation factor
can decline with time.

• Can store entire episode to train on, not just ac-
tion that led to the reward.

• Q-learning is similar to dynamic programming
(DP). But in DP r(s, a) and δ(s, a) are known.

B Computational learning theory

• PAC-learnability – Require that learner can prob-
ably learn a hypothesis which is approximately
correct. In other words, with probability at least
(1− δ) output a h ∈ H such that errorD(h) ≤ ε,
in time polynomial in 1/ε, 1/δ, |X| and size(C).

– To show PAC-learnability, show that (1)
each target concept can be learned in poly-
nomial samples and (2) processing time per
sample is polynomial.

• Sample complexity asks the question of how
many samples that are needed to learn the target
concept c.

• A dichotomy splits X in two ways. H shatters
X if every possible dichotomy in X is expressible
by H.

• The VC-dimension (Vapnik-Chernovenkis dimen-
sion) of H is the size of the largest finite subset
of X shattered by H.

– Example: H are decision hyperplanes.
Shatters (non-colinear) points when |X| ≤
3, therefore VC(H) = 3.

– Large VC ⇔ Expressible hypothesis space
⇔ Little inductive bias

• The mistake bound model: receive x → predict
c(x) → receive true value. How many mistakes
are needed before learning exactly?

• Weighted majority takes the weighted majority
of several possible hypotheses h ∈ H. Makes at
most 2.4 (k + log2(n)) mistakes.

B Unsupervised learning

Market basket analysis

• An itemset is a collection of items, such as
{bread, jam, milk}.
• An association rule is a rule of the form
{bread, milk} → {jam}.
• The goal of market basket analysis is to discover

meaningful association rules.

• The Apriori -algorithm builds itemsets from
small to large. If the support (frequency) of a col-
lection is below a threshold, it is excluded from
all further iterations of the algorithm. From the
created itemsets, association rules are created if
the confidence (conditional probability) is over a
threshold.

• Three equations used are

support(X) =
count(X)

N

confidence(X → Y ) =
support(X,Y )

support(X)

lift (X → Y ) =
confidence(X → Y )

support(Y )

support is probability, confidence is conditional
probability, lift is conditional probability divided
by non-conditional probability.

k-means

• Each observation X belongs to the closest cen-
troid, so that assign(x) = argminyD(x, y), where
D(·, ·) is a distance function and y is the centroid.

• In each iteration, the new center of y is the mean
of all observations in that cluster.

• Advantages: Simple, flexible and decent. Disad-
vantages: random chance, requires guess of k.

• Misc: play around with k, run several times due
to random nature.
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