CHEAT SHEET INF283 Machine Learning - Tommy Odland - Last edit: November 30, 2016

\triangleright Introduction

Nomenclature

Symbol	Meaning
h	Hypothesis (function)
H	Hypothesis space (function space)
x	Instance (data)
X	Instance space (data space)
c	Target concept (function)
\wedge	Conjunction
\vee	Disjunction

A motivating example

Consider the following dataset:

$\#$	Age	Hair	Height	Sex
1	27	long	162	F
2	32	short	181	M
3	15	short	175	M
\vdots	\vdots	\vdots	\vdots	\vdots

- Attributes - Age, Hair and Height .
- Attributes have possible values that are categorical, discrete or real. Here Age is discrete, Hair is categorical and Height is real.
- The target attribute is SEx .
- If real/discrete target concept
\rightarrow Regression problem
- If categorical target concept
\rightarrow Classification problem

Machine learning

- Inductive and deductive reasoning
- Inductive: Specific \rightarrow general
- Deductive: General \rightarrow specific
- Supervised learning - a learner is presented with samples and the target value.
- Unsupervised learning - a learner is presented with samples, but no target value.
- Inductive bias: the set of assumptions that the learner uses to predict outputs given inputs that it has not previously encountered.
- Inductive bias $=$ restriction bias + preference bias. Restriction bias is related to restrictions in the hypothesis space, preference bias is related to preferences in the hypothesis space.
- Good error functions are (1) differentiable (2) increase monotonically on both sides. A good error function is $E\left(x_{i}\right)=\frac{1}{2} \sum_{i}\left(h\left(x_{i}\right)-c\left(x_{i}\right)\right)^{2}$.
- Well posed problem consists of a task T, a performance measure P and a training experience E.
- Data preprocessing is very important in practice. For algorithms such as neural networks and support vector machines, normalizing is crucial.

\triangleright Concept learning

- Concept learning: Inferring boolean valued target concept c.
- The find-s algorithm starts with most specific hypothesis $\langle\emptyset, \emptyset, \ldots ., \emptyset\rangle$ and makes it more general as data is encountered. Finds a maximally specific hypothesis.
- The candidate elimination algorithm finds all hypotheses consistent with the data by incrementing two boundaries G_{i} and S_{i} as samples are encountered.
- Both of the above algorithms perform poorly on noisy data.

Decision trees

Information theory

- Information entropy is defined as

$$
\mathrm{E}(S):=-\sum_{c \in V} p_{c} \log _{2} p_{c}
$$

where $c \in V$ are the categorical variables.

- Information entropy measures impurity, or uncertainty. A coin toss has high entropy.
- The definition of information gain for A with respect to S is:

$$
\operatorname{Gain}(S, A):=\mathrm{E}(S)-\sum_{v \in \operatorname{values}(A)} \frac{\left|S_{v}\right|}{|S|} \mathrm{E}\left(S_{v}\right)
$$

- Information gain is of little use when an attribute has many distinct values. This problem is overcome by normalizing $\operatorname{Gain}(S, A)$ by diving by $\mathrm{E}(A)$. This normalizes with respect to the entropy of the attribute A.
- Entropy may be interpreted as the expected number of bits to optimally encode elements uniformly draw from S for transmission.

Decision trees

- Attributes must be categorical. Explicitly models conditionality between variables.
- Less confidence as we go down, because decision is made based on fewer samples.
- Appropriate classification problems have discrete attribute values. Decision trees are robust against noisy data. It may overfit, the overfitting problem is mitigated by either (1) early stopping or (2) post-pruning. Post-pruning is more successful in practice.
- Reduced error pruning - iteratively remove nodes in the tree if removal increases accuracy over validation set. Stop when no nodes can be removed without decreasing the accuracy.
- The inductive bias is a preference for short trees, and trees which place high information gain at the top of the tree. The ID3 algorithm is greedy, and in general not optimal.

Performance evaluation

- A confusion matrix is given below: Predicted value

True value | | | T |
| :--- | :--- | :--- |
| | T | F |
| | FN | FN |
| | F | FP |
| | TN | |

- The accuracy is $\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{FN}+\mathrm{FP}+\mathrm{TN}}$
- The sensitivity is $\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}$ (true positive)
- The specificity is $\frac{\mathrm{TN}}{\mathrm{TN}+\mathrm{FP}}$ (true negative)
- The precision is $\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}$ and the recall is $\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}$
- The F-measure combines precision and recall.
- k-fold cross validation - Split the dataset into k disjoint, equal sized sets, train and test on each partition and average the results.
- $\operatorname{error}_{S}(h)$ (sample error) can be used to set up a confidence interval for $\operatorname{error}_{\mathcal{D}}(h)$ (true error).
- Bayes theorem is

$$
P(h \mid D)=\frac{P(D \mid h) P(h)}{P(D)}
$$

where $P(h \mid D)$ is the posterior, $P(D \mid h)$ is the likelihood and $P(h)$ is the prior. h is a hypothesis (e.g. "the email is SPAM") and D is data (e.g. "the words "sex" and "free" are in the email").

- The maximum a posterior hypothesis is

$$
h_{\mathrm{MAP}}=\underset{h \in H}{\operatorname{argmax}} P(h \mid D)
$$

Note that $h_{\text {MAP }}$ does not always lead to the "most probable classification."

- The maximum likelihood hypothesis is

$$
h_{\mathrm{ML}}=\underset{h \in H}{\operatorname{argmax}} P(D \mid h)
$$

- A consistent learner is one which commits no errors over the training data.
- The minimum description length principle is a formalization of Occam's razor. Describe data using the classifier and misclassifications requiring the least bits to transfer.

Naive Bayes classifier

- The naive assumption is that attribute values are conditionally independent (do not influence each other), leading to

$$
\begin{aligned}
& \operatorname{argmax} P\left(v_{j} \mid a_{1}, a_{2}, \ldots, a_{n}\right)=\quad \text { (Bayes thm) } \\
& \operatorname{argmax} \\
& \arg \left(v_{j}\right) P\left(a_{1}, a_{2}, \ldots, a_{n} \mid v_{j}\right) \approx \quad \text { (naivety) } \\
& \underset{v_{j} \in V}{\operatorname{argmax}} P\left(v_{j}\right) \prod_{i} P\left(a_{i} \mid v_{j}\right)
\end{aligned}
$$

- Classifies according to

$$
v_{\mathrm{NB}}=\underset{v \in V}{\operatorname{argmax}} P(v) \prod_{i=1}^{n} P\left(a_{i} \mid v\right)
$$

where $v \in V$ are the possibles values for the target attribute. Attributes must be categorical.

- A problem arises if $P\left(a_{i} \mid v\right)=0$ for some a_{i}, because 0's influence classification too strongly. Two solutions are
- Add artificial count of 1 (numerator and denominator).
- Design a prior expectation using an m estimate, $\frac{n_{c}+m p}{n+m}$, where n and n_{c} are real samples and m is a weight, p is a prior estimate. The second term in the equation are the virtual samples.

\triangleright Artificial Neural Networks

- Output of an artificial neuron is given by

$$
y=f\left(\Sigma_{i} w_{i} x_{i}\right)
$$

where w_{i} are weights and x_{i} are inputs.

- Some activation functions f are (1) the thresholded perceptron (step function), (2) the unthresholded perceptron (linear function), (3) the sigmoid function and (4) the tanh (hyperbolic tangent) function.
- The universal approximation theorem states that with 1 hidden layer, any continuous function can be approximated.
- Gradient descent algorithm for training
- Use the following error estimate

$$
E(\vec{w})=\frac{1}{2} \underbrace{\sum_{d \in D}}_{\text {All data }} \underbrace{\left(t_{d}-o_{d}\right)^{2}}_{\text {True minus predicted }}
$$

where $o_{d}=f\left(\vec{w} \cdot \vec{x}_{d}\right)$ and $f^{\prime}=(1-f) f$ if f is the sigmoid.

- Gradient descent - Consider all $d \in D$ before moving along error surface.
- Stochastic gradient descent - One training sample d at a time.
- If $f(x)=1 /\left(1+e^{-x}\right)$, then $f^{\prime}(x)=$ $(1-f(x)) f(x)$. The update rules are $\Delta w=$ $-\epsilon \frac{\partial E}{\partial w}$, e.g. negative of gradient. For output neurons

$$
\frac{\partial E}{\partial w_{j}}=(O-t) \cdot f^{\prime}(o) \cdot H_{j}
$$

and for hidden neurons (one hidden layer)

$$
\frac{\partial E}{\partial v_{j k}}=(O-t) \cdot f^{\prime}(o) \cdot w_{j} \cdot g^{\prime}\left(h_{j}\right) \cdot I_{k}
$$

- To alleviate problems with local minima, one or several of the following techniques may be applied: momentum term, stochastic gradient descent, train several networks.
- Overfitting may be controlled by monitoring error with respect to test data. When error as a function of model complexity on test data is minimal, the model is probably good.
- Strengths include extreme approximation power, few prior assumptions. Weaknesses include overfitting, computational expense and interpretation difficulties.

Support Vector Machines

- Classification in feature space using hyperplanes.
- The optimization problem (for linearly separable data) is

$$
\begin{array}{cl}
\min & \frac{1}{2}\|\vec{w}\| \\
\text { s.t. } & y_{i}\left(\vec{w} x_{i}-b\right) \geq 1 \forall i
\end{array}
$$

where \vec{w} is a vector and b is a threshold.

- Advantages: easy training, no local optima, scales well, different types of input works. Disadvantages: a good kernel is often needed.

$>$ Reinforcement learning

- Autonomous agent vs. environment. Think backgammon, pac-man, chess, robot, etc.
- $Q(s, a)$ maps a state s and an action a to the maximum cumulative reward.
- The maximum cumulative reward V is

$$
V\left(s_{t}\right):=\sum_{i=0}^{\infty} \gamma^{i} r_{i+1}
$$

where s_{t} is the state in which the first action is performed, γ is a discount factor and r_{i+1} are the rewards.

- Other sensible reward systems are finite horizon rewards and average reward.
- The Q-learning equation is

$$
\pi^{*}(s)=\underset{a}{\operatorname{argmax}}[r(s, a)+\gamma V *(\delta(s, a))]
$$

where the term inside the brackets is replaced by $Q(s, a)$. This allows us to learn the optimal action policy $\pi^{*}(s)$ without knowing $r(s, a)$ and $\delta(s, a)$ explicitly.

- The Q-learning algorithm is
(a) Select an action a, execute it
(b) Receive a reward r
(c) Observe a new state s^{\prime}
(d) Update $\hat{Q}(s, a) \leftarrow r+\gamma \max _{a^{\prime}} \hat{Q}\left(s^{\prime}, a^{\prime}\right)$
- Experimentation can be added to avoid overcommitting to early actions. Experimentation factor can decline with time.
- Can store entire episode to train on, not just action that led to the reward.
- Q-learning is similar to dynamic programming (DP). But in DP $r(s, a)$ and $\delta(s, a)$ are known.

Computational learning theory

- PAC-learnability - Require that learner can probably learn a hypothesis which is approximately correct. In other words, with probability at least $(1-\delta)$ output a $h \in H$ such that $\operatorname{error}_{\mathcal{D}}(h) \leq \epsilon$, in time polynomial in $1 / \epsilon, 1 / \delta,|X|$ and $\operatorname{size}(C)$.
- To show PAC-learnability, show that (1) each target concept can be learned in polynomial samples and (2) processing time per sample is polynomial.
- Sample complexity asks the question of how many samples that are needed to learn the target concept c.
- A dichotomy splits X in two ways. H shatters X if every possible dichotomy in X is expressible by H.
- The VC-dimension (Vapnik-Chernovenkis dimension) of H is the size of the largest finite subset of X shattered by H.
- Example: H are decision hyperplanes. Shatters (non-colinear) points when $|X| \leq$ 3 , therefore $\mathrm{VC}(H)=3$.
- Large VC \Leftrightarrow Expressible hypothesis space \Leftrightarrow Little inductive bias
- The mistake bound model: receive $x \rightarrow$ predict $c(x) \rightarrow$ receive true value. How many mistakes are needed before learning exactly?
- Weighted majority takes the weighted majority of several possible hypotheses $h \in H$. Makes at most $2.4\left(k+\log _{2}(n)\right)$ mistakes.

\triangleright Unsupervised learning

Market basket analysis

- An itemset is a collection of items, such as \{bread, jam, milk $\}$.
- An association rule is a rule of the form $\{$ bread, milk $\} \rightarrow\{$ jam $\}$.
- The goal of market basket analysis is to discover meaningful association rules.
- The Apriori -algorithm builds itemsets from small to large. If the support (frequency) of a collection is below a threshold, it is excluded from all further iterations of the algorithm. From the created itemsets, association rules are created if the confidence (conditional probability) is over a threshold.
- Three equations used are

$$
\begin{aligned}
\operatorname{support}(X) & =\frac{\operatorname{count}(X)}{N} \\
\operatorname{confidence}(X \rightarrow Y) & =\frac{\operatorname{support}(X, Y)}{\operatorname{support}(X)} \\
\operatorname{lift}(X \rightarrow Y) & =\frac{\operatorname{confidence}(X \rightarrow Y)}{\operatorname{support}(Y)}
\end{aligned}
$$

support is probability, confidence is conditional probability, lift is conditional probability divided by non-conditional probability.

k-means

- Each observation X belongs to the closest centroid, so that $\operatorname{assign}(x)=\operatorname{argmin}_{y} D(x, y)$, where $D(\cdot, \cdot)$ is a distance function and y is the centroid.
- In each iteration, the new center of y is the mean of all observations in that cluster.
- Advantages: Simple, flexible and decent. Disadvantages: random chance, requires guess of k.
- Misc: play around with k, run several times due to random nature.

References

- Tom M. Mitchell. Machine Learning. McGraw-Hill Series in Computer Science, Artificial Intelligence. New York: McGraw-Hill, 1997.
- Thorough, good book. Focus on theory and applications. Requires knowledge of mathematics to enjoy.
- Lantz, Brett. Machine Learning with R. Olton: Packt Publishing Ltd, 01.
- More hands-on than Mitchell. Focuses on application and experimentation using the programming language R , rather than theory.

