
Cheat Sheet INF237
Algorithms engineering – Tommy Odland – Last edit: June 2, 2018

BPractial programming and Python

• Some modules from the Python standard library
are indispensable in programming contests:

– bisect for working with binary search.

– defaultdict and deque from collections.

– heapq for working with priority queues.

– itertools for permutations, combinations, etc.

– reduce from functools is sometimes useful.

– See also math, string, operator and random.

– Learn how to use the built-in data structures.

• Implementing a naive algorithm and testing
against it on random inputs is often wise.

• If Python 3 is too slow, try Python 2. Use the
%timeit and %lprun IPython functions to time
code and identify slow parts. Use Java if all fails.

BSliding, searching and sorting

• Comparison based sorting runs in O (n log n) time.

• Maintaining a sorted list can speed up algo-
rithms, since insertion is O (log n) and retrieval
is O (log n). This advice has broad applicability.

• For problems “find minimal k such that P (k)”, it
might be possible to use binary search to find k if
“Is P (k) possible?” can be answered quickly.

BGraph algorithms

• BFS and DFS are used to explore graphs. Both
run in O (V + E) time. DFS uses a stack, BFS
uses a queue. May be implemented recursively too.

• A minimal spanning tree may be found quickly us-
ing Krusal’s algorithm or Prim’s algorithm.

– Prim’s algorithm uses a priority queue.

– Kruskal’s algorithm uses a disjoint-set data
structure to check if vertices are in the same set.

• Dijkstra’s algorithm finds the single source short-
est path to every other vertex in a graph.

– A more general algorithm is the A∗ search.

BDynamic programming

• Dynamic programming is used for problems with
overlapping sub-problems, i.e. problems that obey
the principle of optimality.

• The recipe is to (1) find a recursive formula, (2)
identify the base cases (initial conditions) and (3)
solve the problems such that no problem is solved
twice. Either bottom-up to top-down using cache.

• Typically one creates a DP table, an n-dimensional
table of function values. Dynamic programming is
also possible over other data structures, such as
trees and more general graphs.

BExponential time algorithms

• Some algorithms run in exponential time, such as
graph coloring.

• Approximate algorithms may often be used if find-
ing the best answer is not necessary.

• If the exact answer is needed, use backtracking in
an implicit tree to prune infeasible solutions as
soon as possible to reduce run time in practice.

BComputational geometry

• The area of a convex polygon may be found in
O (n) time using the shoelace formula.

• Given a set of n points in R2, their convex polygon
may be found in O (n log n) time using Graham’s
scan, which orders the point by angle and exam-
ines them in a linear fashion using a stack.

• Angles, line crossings and so forth may be tricky
due to floating point arithmetic and special cases,
but typically relatively straight forward.

BNumber theory

• The Sieve of Eratosthenes generates primes ≤ n in
O (n log log n) time, since 1/2 + 1/3 + 1/5 + · · ·+
1/n = log log n. It naively requires O (n) space.

• To verify if a number is prime, one option is
to check numbers from 1 to

√
n, or use a pre-

computed prime list if available.

BSegment trees

• Given an array A, computing sums A[i . . . j] has
O (1) update and O (n) query. A cumulative sum
has O (n) update and O (1) query.

• A segment tree balances the requirements above
for O (n log n) update and O (n log n) query. It
may also be used for other functions apart from
sums.

BReferences

• Halim, Steven. Competitive Programming, 3rd Edi-
tion, 2013.

• Dasgupta, Sanjoy. Algorithms. McGraw Hill, 2008.


